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Concept Clustering in Design
Teams: A Comparison of Human
and Machine Clustering
Concept clustering is an important element of the product development process. The pro-
cess of reviewing multiple concepts provides a means of communicating concepts devel-
oped by individual team members and by the team as a whole. Clustering, however, can
also require arduous iterations and the resulting clusters may not always be useful to the
team. In this paper, we present a machine learning approach on natural language
descriptions of concepts that enables an automatic means of clustering. Using data from
over 1000 concepts generated by student teams in a graduate new product development
class, we provide a comparison between the concept clustering performed manually by
the student teams and the work automated by a machine learning algorithm. The goal of
our machine learning tool is to support design teams in identifying possible areas of
“over-clustering” and/or “under-clustering” in order to enhance divergent concept gen-
eration processes. [DOI: 10.1115/1.4037478]
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1 Introduction

1.1 Concept Classification, Clustering, and Generation in
the Design Process. Classification and clustering are semantically
similar in that they are both tasks of grouping a given set of
objects into meaningful and useful groups. However, there are
important differences: classification is the task of grouping objects
into predefined classes created with prior knowledge, whereas
clustering is the task of finding underlying patterns and grouping
objects together based on their similarity [1]. Concept clustering
is a crucial part of the product development process as it allows
designers to interpret the concepts they generate and decide which
of these concepts to develop, modify, or adopt [2]. The process of
reviewing multiple concepts provides a means of communicating
concepts developed by individual team members and by the team
as a whole.

Concept classification and clustering have a long history rooted
in psychology [3] and artificial intelligence. Smith [4] defines a
“concept” as “a mental representation of a class or individual.”

Dong and Agogino [5] developed a learning algorithm to auto-
mate the process to handle a large quantity of natural language
texts to construct these design representations or concepts. Their
attempts recommend that designers find relevant information
based on terminologies and organize the data in a more meaning-
ful way. This approach is similar to Wood et al. [6] in text-based
information analysis, and our research was motivated by such text
data/information retrievals for concept clustering in new product
development.

In the design process, choosing the right concept classes
requires a significant amount of time and effort to narrow down
concepts into a manageably small number of compelling clusters;
it is crucial to explore these clustered opportunity areas before
moving on to the next phase of the product development process,
such as concept selection [7–9]. Concept clustering can also be
used to identify cluster areas that have a relatively small number
of concepts, which can indicate to the design team useful targets
for further divergent concept generation.

Clustering of design concepts is useful for organizing concepts
into similar groups, therefore aiding designers in removing dupli-
cate concepts and managing a large number of similar concepts
[1]. Clustering, however, can also require arduous and ineffective
iterations, and the resulting clusters may not always be effective
for team communication, which is key to the success of the design
process [10]. While, in machine learning, conceptual clustering
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methods have been well developed as a means to summarize and
organize data [11], the application of concept clustering for
designers who are actually using it in real-world design projects
during concept generation has been relatively underexplored.

From a machine learning perspective, classification is often per-
formed with supervised learning against a known standard,
whereas clustering typically uses unsupervised learning as there is
rarely a standard to learn against. Many clustering algorithms
have been proposed, including K-means [12], spectral clustering
[13], mean shift [14], and hierarchical clustering [15].

In our research, in order to automatically generate concept clus-
ters, we compute the numerical similarity between concepts
through paragraph similarity with word embedding as a building
block and compare the results between automatic and human
clustering.

1.2 Semantic Clustering. Semantic clustering has been stud-
ied widely and many approaches have been proposed. In our
review, we discuss semantic clustering in terms of three parts: (1)
word embedding, (2) clustering algorithms, and (3) applications.

Semantic clustering is a form of computational linguistics that
evaluates quantitative measures of similarities in the meaning of
words. In order to process human languages computationally,
there have been approaches to embed, or encode, “words” into
vectors [16–18], as is done with “pixels” of images or “sampled
frequencies” of audio data. There is no straightforward way to
conduct the embedding, but the main idea is that words of seman-
tically similar meaning should have similar vectors (i.e., nearby
points in the high-dimensional embedding space).

Overall, there are two branches in word embedding: counting-
based methods and predicting-based methods. Counting-based
methods (e.g., latent semantic analysis) basically rely on the sta-
tistics of word appearance in documents. Predicting-based meth-
ods (e.g., neural language models) try to learn embedding by
predicting a word from the nearby words. More details on these
two branches can be found in Baroni et al. [19].

Deep learning uses computational models with multiple proc-
essing layers to learn representations of data with multiple levels
of abstraction [20]. Given the recent success of deep learning in
various other fields, there have been several approaches using
deep learning in word embedding. For example, Word2Vec [17]
is known as a well-defined and useful predicting-based method of
word embedding. In this research, we use Word2Vec as our build-
ing block.

In both counting-based and predicting-based methods, there are
various ways to handle “textual data” given by a set of words (i.e.,
word vectors) for the purpose of clustering them. Broadly speak-
ing, there are hierarchical approaches (e.g., non-negative matrix
factorization [21]) and partitional approaches (e.g., K-means
[22]). There is no well-established preference between the two
approaches. While Steinbach et al. [23] posit that K-means per-
forms better than hierarchical clustering in the document cluster-
ing domain, Zhao and Karypis [24] state that even though
partitional clustering algorithms (including K-means) are compu-
tationally efficient for large datasets, they are inferior to agglom-
erative hierarchical methods in terms of clustering quality. In this
research, cosine similarity measures rather than Euclidean dis-
tance made more sense, thus favoring hierarchical clustering over
partitional clustering.

Le and Mikolov [25] introduced Para2Vec, which is an
extended version of Word2Vec, assigning high-dimensional vec-
tors to paragraphs. However, the Para2Vec algorithm was origi-
nally designed to handle a very high number of paragraphs, and
thus was less useful for our relatively small number of concept
descriptions (�1000), given as short text paragraphs. Therefore,
we define our own similarity metric for short texts, as discussed in
Sec. 2.2.

Semantic clustering has seen a wide range of applications,
including document classification [26–28] filtering repetitive

news/blog feeds [29], identifying topics in programming source
code [30], identifying structure in a patent database [31], and
identifying distance of designer’s points of view [32]. In this
research, we use semantic clustering on short text descriptions,
which has previously been shown to be successful in mobile mal-
ware app detection [33], customer review classification [34], and
Twitter information filtering [35]. We apply our semantic cluster-
ing algorithm in an effort to support design processes, which was
an analogous focus in Dong and Agogino’s [36] work.

2 Research Design

As shown in Fig. 1, we use the concept clustering data collected
from a graduate level design course. Taking certain fields of them
as paragraphs, a similarity matrix is calculated by the word
embedding generated from a general corpus. Then, concepts are
clustered by machine learning algorithms. We compare the
machine clustering with human clustering in the form of
human–machine plots (HM plot).

2.1 Data Source. The concepts we use as input data in this
work were collected from a human-centered design course we
will label as ME300. The course was taught in Fall 2016 at the
University of California, Berkeley, and aimed to teach human-
centered design methods using theDesignExchange website.2 Stu-
dents in ME300 were split into teams, each tasked with a unique
design challenge (Table 1). During the semester, student teams
generated and described 1154 concepts using a “half-sheet” tem-
plate (Fig. 2) that included the concept’s title, a brief text descrip-
tion, a list of key attributes/features, a rough sketch of the idea,
and a list of creativity methods used (if any). The teaching team
provided the half-sheet template to students as part of an individ-
ual homework assignment. The students were asked to generate
ideas individually and bring them to class to share with their team
and to be used in a concept clustering activity. While concept
clustering was part of the class’s team assignments, three (out of
14) teams did not include the clustering activity results in their
documentation. Therefore, we focused on the 11 teams, renum-
bered as team 1–11, who explicitly documented their clusters
across a complete list of all generated concepts in their submis-
sions. The natural language toolkit (NLTK),3 was used to mark
the speech of tag in concept description. As shown in Table 2,
each team described their concepts in 17.77 words, on average,
including 5.97 nouns and 3.47 verbs.

In this research, we aim to address the primary research ques-
tion as to how the results of machine learning-based concept clus-
tering differ from manual concept clustering. We then explore
implications for supplementing human clustering with machine
learning clustering in product design teams.

2.2 Machine Clustering Using Machine Learning Meth-
ods. Our goal is to quantitatively cluster design concepts, which
are in the format of natural language paragraphs written by

Fig. 1 Processing flow of our proposed method

2https://www.thedesignexchange.org
3http://www.nltk.org
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members of product design teams. Automatic clustering requires a
similarity (or distance) metric between items. For example, con-
sider a pair of concept paragraphs in our data set from team 1’s
autonomous vehicle project: c1 and c2 (c1¼ “instead of using
steering wheel, user will use screen to control car” and c2¼ “user
can sleep inside a moving car”). As the concept description is a
relatively short paragraph, we applied semantic similarity, rather
than word similarity, to avoid sensitivity to word choice. Then,
we propose a paragraph similarity metric simðc1; c2Þ based on
semantic similarity.

2.2.1 Word Similarity. As a first step, we conducted word
embedding using Word2Vec, which means we assigned a d-
dimensional continuous vector to each word. We used d ¼ 200 as
typical [37], applied to 100 MB text84 as the corpus, including
47,134 unique words in the vocabularies. Text8 was cleaned to
contain only letters a–z and nonconsecutive spaces. Using the
Tex8 corpus, a word can be expressed as a d-dimensional vector
w. For a pair of words, w1 and w2, we use similarity metric such
as:

sim w1; w2ð Þ ¼
w1 � w2

w1w2

(1)

To show the efficacy of our word embedding, we illustrate simi-
larity calculations for team 1 between the query words and k near-
est neighbor words. In Table 3, we show four nearest words for a
given query word. From this table, we see that the nearest neigh-
bor words are, in fact, semantically similar to the query words.
Therefore, we proceed with our word similarity metric.

2.2.2 Paragraph Similarity. We define the concept, together
with its description, as a paragraph. A paragraph is a set of fea-

tured words, ci ¼ fwi
1; wi

2; …; wi
li
g, where the featured words

refer to the noun and verb words in the paragraph, and li is the
number of featured words in ci. The number of words in each
paragraph, or each concept, varies.

For a given pair of concept paragraphs, ci and cj, we define a

similarity matrix Sci�cj
2 Rfli�ljg with pairwise word similarities

such as

Sci�cj
jðm;nÞ ¼ simðwi

m;w
j
nÞ (2)

where Sjðm;nÞ represents ðm; nÞ element of the matrix S. Upon this
full pairwise matrix, we calculate real-valued concept paragraph
similarity score sim ðci; cjÞ by averaging p percent of highest
scores in the matrix. Specifically, we denote

simðci; cjÞ ¼ 1=K
XK

k¼1

dk (3)

where dk is the largest K scores in Sci�cj
and K ¼ p � li � lj. The

parameter p is a percentage that controls the extent to which the
paragraph similarity calculation uses the words from the concept
description. A too low p-value may mislead the algorithm to focus
only on the words that are frequently used but may not be topic
related. On the other hand, if the p-value is too high, words that
are specific but isolating in the word vector space may mislead the
algorithm to lower the similarity between a concept pair. Given
these constraints, we empirically tested different p values and
found p¼ 15% to be the most effective with this application. Note
that the similarity score has a range between [�1, 1].

To illustrate these algorithmic techniques, consider the example
of team 1 again. Using the paragraph similarity metric, we calcu-
late all pairwise distances between the 82 concepts generated by
team 1. Team 1 focused on the human interactions with an auton-
omous vehicle, and their concepts are shown as a heat map [38] in
Fig. 3. The concepts in the heat map have been sorted by their
machine-derived semantic similarity, with similar concepts close

Table 1 ME300 teams and their associated projects

Team no. Team design challenge

1 Understanding the interface between humans and auton-
omous vehicles

2 Navigating the deep seas with an autonomous under-
water vehicle

* Connecting kids and parents using wearable technology
3 Making the cycling experience safer more navigable

using wearable technology
* Automatically generating control-based dynamic simu-

lation models
4 Creating and implementing esthetic wind turbines
5 Improving the delivery of ear medication
6 Using microneedle arrays for transdermal drug delivery
7 Integrating innovative robotics with educational

curricula
* Including nature in the search for ideal housing
8 Improving the outcomes of spinal surgeries
9 Improving disaster relief with free-standing robotics
10 Exploring a new way to harvest ocean power
11 Enhancing theme park experiences through improved

character costumes

Note: Teams with * did not sufficiently complete their concept clustering
exercise and therefore we do not include their data in our analysis.

Fig. 2 An example half-sheet from team 1

Table 2 Statistical details of concept description

Team
no.

Average description
length

Average
# nouns

Average
# verbs

1 15.95 5.89 3.06
2 24.84 6.66 4.84
3 13.33 5.24 3.01
4 24.11 7.59 4.32
5 17.43 5.33 3.49
6 21.93 6.75 4.25
7 7.86 4.81 1.61
8 18.05 5.98 3.57
9 15.74 5.34 3.04
10 13.42 5.22 2.84
11 22.80 6.90 4.18
Average 17.77 5.97 3.47

4https://cs.fit.edu/~mmahoney/compression/textdata.html
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to each other. Thus, the block-diagonal structure shows the algo-
rithm’s ability to cluster semantic relevant concepts. As shown in
the magnified part of the heat map, concepts co-located in the
high-similarity areas are semantically close to each other (e.g.,
“comfortable light in car,” “sleeping inside car,” “obstacle warn-
ing system,” “sensor failure warning,” “emergency warning,”
“low battery warning,” and “maintenance warning”). These dark-
colored areas visually distinguish the concept clusters that the
algorithm generated.

2.2.3 Clustering. The similarity matrix allows us to conduct
hierarchical clustering [15] of each team’s concepts. Although the
number of clusters can be adjusted, we choose—as a first step for
now—to set the number of machine clusters to be the same as the
number of human clusters, thus simplifying the comparison
between them. In the future, we will continue to develop our algo-
rithm to understand how it behaves when a different number of
clusters are chosen or where the algorithm self-generates the opti-
mal number.

To address the problem of naming each machine-generated
cluster, we attempt to find out those words that contribute most
when calculating the concept similarity matrix. Specifically, for
the kth concept cluster, clk ¼ fc1; c2;…; cnk

g, we count every
word pair for every concept pair ðci; cjÞ where ci; cj 2 clk and
i < j, and choose the most frequent word pair as a cluster label.
When a concept cluster includes only one concept, we choose its
concept name as a cluster label.

3 Data Analysis and Comparisons

To compare the results of concept clustering done manually
(human clustered) and automatically (machine clustered), we cre-
ated human–machine plots (see Sec. 3.1). The HM plots show two
distinct patterns across clustered concepts: under-clustering and
over-clustering. Our success in identifying these patterns high-
lights a potential application area where deep learning tools can
support design teams. We discuss these patterns and their implica-
tions in the rest of the paper. The remainder of the paper discusses
the preliminary stages of our machine learning algorithm on natu-
ral language descriptions of concepts and illustrates clustering pat-
terns and their implications.

3.1 Human–Machine Plot (HM Plot). The student teams
manually assigned each concept to one of their human defined
clusters, hi, and our algorithm automatically assigned each con-
cept paragraph to one of the machine learning based clusters, mj.
In Fig. 4, we illustrate an example distribution based on ðhi; mjÞ
locations. We note two distinct patterns of concept clusters that
emerge from the HM plot data: (pattern #1) under-clustering and
(pattern #2) over-clustering (Fig. 5).

Pattern #1: Machine suggests that teams under-clustered their
concepts.

Under-clustering refers to a pattern where the algorithm breaks
apart a single large human-generated cluster into multiple clusters.
The left portion of Fig. 5 depicts the under-clustering pattern of
part of the clusters.

This pattern highlights an opportunity for the students to revisit
their clusters and think more divergently in the new machine-
generated cluster areas. When the clusters are too large, as is the

Table 3 Four nearest neighbor (NN) words to each query word in the embedding space. In each cell, we show the similarity calcu-
lation between the query word and the nearest neighbor word.

Query word 1NN 2NN 3NN 4NN

Steering Loading (0.813) Brake (0.806) Hydraulic (0.784) Crank (0.780)
Driving Pulling (0.608) Mounting (0.607) Glider (0.600) Charging (0.597)
Safety Maintenance (0.765) Handling (0.694) Monitoring (0.691) Surveillance (0.675)

Fig. 3 Heat map of concepts generated by team 1

Fig. 4 A depiction of an HM plot. The x-axis shows the index of
human clustering, the y-axis shows the index of machine clus-
tering, and the size of the circles shows the number of concepts
in each cluster.

Fig. 5 A depiction of the under- and over-clustering pattern of
part of the clusters on an HM plot
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case in under-clustering, the teams may lose the main value prop-
osition of that group of concepts. The cluster becomes a grab bag,
lacking definition that is necessary for the cluster to be useful in
the downstream selection process. To remedy this challenge, the
student teams can see the clusters created by the algorithm and
use this to reconsider their clusters, which may spur further diver-
gent concept generation in each new cluster.

Pattern #2: Machine suggests that teams over-clustered their
concepts.

Over-clustering refers to a pattern where the algorithm com-
bines several small human-generated clusters into a single large
machine cluster. The lower portion of Fig. 5 depicts the over-
clustering pattern of part of the clusters.

This pattern highlights an opportunity for students to revisit
their clusters and either perform concept generation on these mini-
mally populated clusters, or think about combining similar clus-
ters together. By pointing out opportunities to revisit over-
clustered concepts, teams might consider expanding concept gen-
eration in underpopulated small clusters. Conversely, if the team
believes the number of concepts is sufficient, they may want to
pare down their clusters into sets that could become more useful
in further convergent concept selection.

We constructed HM plots for all 11 teams that completed their
own concept clustering (see Table 4).

In Secs. 4 and 5, we explore the patterns of under- and over-
clustering for each team. While we do not claim that there is a
“right” or “wrong” way to cluster concepts, nor do we believe that
machine-generated clusters are better than human-generated clus-
ters; rather, we posit that our algorithm provides meaningful
opportunities for teams to revisit their clusters and thus engage in
more concept generation and refinement processes.

4 Result and Human–Machine Plots Analysis

4.1 Concepts and Clusters Generated by Human Teams.
Overall, the 11 teams we analyzed generated 930 concepts out of
the 1154 concepts generated in the class (Table 4). On average,
each team created 12.6 clusters of concepts. Team 7 created the
most concepts, with 120 concepts generated. Team 6 generated
the least (40). Team 3 created the most concept clusters (21) and
team 5 created the least concept clusters (9). The number of con-
cepts and clusters created by each team is shown in Table 4.

4.2 HM Plots for ME300 Teams. In Fig. 6, we show the
overview of the HM plots for the 11 teams who sufficiently com-
pleted their concept clustering exercises. We highlight these HM
plots here to show how various student teams exhibited patterns
of both under-clustering and over-clustering.

Figure 6 shows that teams 1–8 exhibit a similar linear pattern of
the location of circles that display the density of concepts in each
cluster, where the human and machine clusters are grouped in a
similar manner. Teams 9–11, however, show markedly different
patterns, as they created overlapping clusters where a single con-
cept was clustered into several different clusters.

For a given HM plot, we define three statistical terms: congru-
ency, under-clustering index, and over-clustering index. The con-
gruency (represented as a percentage) is the number of concepts
on the diagonal of the plot divided by all the concepts generated
by a team. It shows the similarity between machine clustering and
human clustering. The under-cluster index is the maximum num-
ber of machine clusters whose concepts fall into one human clus-
ter divided by the number of clusters for the team. Note that the
machine clustering algorithm was set to have the same number of
clusters as the team generated. The over-cluster index is the maxi-
mum number of human clusters whose concepts fall into one
machine cluster divided by the number clusters for the team.

As an example, let us assume that a team generated 13 concepts
and clustered them into three groups. Therefore, we would create
an HM plot with three human clusters and three machine clusters.
The number of concepts in the HM plot would simply be denoted
as a 3� 3 matrix where the rows are machine clusters and the col-

umns are human clusters, e.g.,

0 1 2

0 3 0

5 2 0

2
4

3
5. The 13 total concepts

are spread across the human and machine clusters (i.e., 13¼ 5
þ 2þ 3þ 1þ 2). In this case, we calculate congruency¼
ðconcepts in diagonal=total conceptsÞ¼ðð5þ3þ2Þ=13Þ¼ 0:77. To
understand the degree of under-clustering and over-clustering, we
calculate the under clustering index¼maxðð1=3Þ;ð3=3Þ; ð1=3ÞÞ¼
1 (columnwise maximum spread-out), and over clustering index¼
maxðð2=3Þ;ð1=3Þ;ð2=3ÞÞ¼0:67 (rowwise maximum spread-out).

Table 5 shows these statistical summaries of the eight teams’
HM plots. In our data set, teams 9, 10, and 11 created overlapping
clusters, meaning that some of their concepts were put in more
than one cluster. If the teams grouped individual concept to multi-
ple clusters, no diagonal patterns exist. Therefore, we excluded
congruency, over-clustering, or under-clustering indices of the
data from team 9-11 in this analysis.

The under-cluster column in Table 5 shows the name and size
of the human cluster whose concepts were grouped into most
machine clusters. These were the most under-clustered and were
broken up into the most machine clusters.

The over-cluster column in Table 5 shows the name and size of
the machine cluster whose concepts were grouped into the most
human clusters. Teams 5 and 7 have high under-clustering indices,
indicating that some human clusters in these teams are too big,
and can be split into more segments. These two teams also have
high over-clustering indices, indicating that some concepts share
similar attributes but are put into different human clusters.

To give more details about the HM plot, we consider team 1
again as an example (Fig. 7). They focused on a project for under-
standing the interface between humans and autonomous vehicles,
generated 82 concepts and divided them into 14 categories. They
exhibited both patterns of under-clustering and over-clustering.
Figure 7 shows the HM plot comparing the team-generated con-
cept clusters and machine-generated concept clusters. The size of
each bubble corresponds to the number of concepts within that
cluster.

4.3 Example of Under-Clustering Patterns. Figure 8 shows
an overview of the teams’ example patterns in under-clustering
their concepts. To illustrate the under-clustering in detail, we con-
sider team 4 as an example. Team 4 focused on a project for creat-
ing and implementing esthetic wind turbines, generated 103
concepts and divided them into 18 clusters. Table 6 shows the
cluster named “children friendly design” comprised of 12 con-
cepts. Because the team under-clustered, the algorithm broke

Table 4 Number of concepts and clusters created by each
team

Team no.
# team concepts

generated
# clusters each
team generated

Avg. # concepts
per cluster

1 82 15 5.5
2 70 17 4.1
3 70 21 3.3
4 103 18 5.7
5 100 9 11.1
6 40 11 3.6
7 120 20 6.0
8 80 10 8.0
9 100 8a 20.4
10 59 5a 23.8
11 106 5a 22.2
Total 930 12.6 10.3

aOverlapped clusters means some concepts were put in more than one
cluster.
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these concepts down into smaller clusters with several different
labels. In the machine labels’ view, the first four concepts in this
cluster tend to be about activity, while the others emphasize wind
devices and energy generators.

4.4 Example of Over-Clustering Patterns. Likewise, Fig. 9
shows an overview of the teams’ example patterns in over-
clustering their concepts. To illustrate the over-clustering in
detail, we take team 3 as an example. Team 3, focused on a pro-
ject for making the cycling experience safer and more navigable
using wearable technology, generated 70 concepts and divided
them into 21 clusters. The team clustered two concepts (#51
“hiking challenge app” and #56 “biking challenge app”) into the
two different clusters of “outside exercise” and “cycling,” but the
machine found that they are both related to app development (see
Table 7). This relation happened to be mentioned in the concept
description, and the machine succeeded in finding that pattern.
This raises the question as to whether the common feature should
be the implementation as an app; or should it focus on the differ-
ent experiences associated with outdoor exercising, in general,
versus cycling, in particular? Clearly, there is a divergent

thinking opportunity to generate more concepts in any of these
categories.

5 Discussion/Conclusion

In this paper, we attempt to build a framework for concept clus-
tering in product development by applying a machine learning-
based concept clustering tool on natural language descriptions of
concepts developed by design teams. By comparing the machine-
generated clusters to the human team-generated clusters, we see
patterns of apparent over-clustering and under-clustering that may
improve team performance.

Teams who under-cluster may have created too few clusters for
their concepts, therefore resulting in large and unwieldy clusters.
These teams might benefit by expanding their few clusters into
smaller clusters that better represent the themes or functionality
represented in the concepts. Our algorithm highlights areas where
teams might consider creating more clusters in order to break
apart their ideas into more specific and descriptive themes.

Teams who over-cluster, on the other hand, may have created
too many clusters for their concepts when they could have used
fewer clusters to give a more accurate representation of their

Fig. 6 Overview of 11 teams’ HM plots. In the subplot, the x-axis shows the human clusters,
the y-axis shows the machine clusters, and the size of the circles shows the number of con-
cepts in each cluster. More description of the HM plots are available under the “Supplemental
Materials” tab for this paper on the ASME Digital Collection.

Table 5 Summary of eight teams’ HM plots: congruency, indices of over-clustering and under-clustering

Team no. Congruency Under-cluster index Under-cluster title (size) Over-cluster index Over-cluster title (size)

1 0.29 0.47 Leisure and entertainment (10) 0.6 Car; driver (17)
2 0.34 0.35 Attachments (16) 0.47 Vehicle; equipment (25)
3 0.39 0.43 Outdoor (12) 0.43 Game; games (21)
4 0.27 0.37 Modern wind farms (9) 0.68 Wind; device (31)
5 0.36 0.6 Cool bottles (25) 0.8 Ear; ears (23)
6 0.38 0.36 Added feature (11) 0.73 Needles; micro (19)
7 0.29 0.74 Tensegri-home (22) 0.84 Robot; robots (42)
8 0.46 0.5 New implant (16) 0.7 Fracture; needle (20)
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concept themes. Thus, these teams might benefit from convergent
thinking to pare down their many clusters into a more parsimoni-
ous cluster set. They might use concept merging to mix and match
similar features, functionalities, or experiences. Over-clustering
may also indicate opportunity spaces that would benefit from fur-
ther concept generation within each cluster as well. In other
words, teams might benefit from taking each of their small con-
ceptual clusters and generating more concepts in systematic ways
by expanding the concepts associated with each of these clusters.

6 Future Research

This paper outlines preliminary research in developing a tool
that identifies meaningful patterns in clustering of design con-
cepts. Our goal is to develop a machine-learning tool that will
assist in mediating communication [10] among design team mem-
bers and help them focus in areas that might benefit from further
concept generation.

Although we chose to keep the number of machine- and
human-generated clusters the same in order to produce meaning-
ful HM plots, our algorithm does allow varying the number of
machine-generated clusters over a given set of data. We plan on
developing guidelines for when reducing or increasing the number
of machine-generated clusters would be of value. In testing our
algorithm using a variable number of machine clusters, we found
that fewer machine-generated clusters led to large bubbles and too
large a number of clusters led to bubbles with a single concept. At
least on our data set, humans seemed to do a reasonable job in set-
ting the number of clusters relative to their concept pool. How-
ever, we predict there may be an advantage in increasing the
number of machine-generated clusters when the average number
of concepts per cluster is relatively high (say over 20% of the
pool). As the goal of concept generation is to generate as many
concepts as possible, we predict little advantage in reducing the
number of clusters unless the number of concepts per cluster is
very low (less than 2%). Note, none of the teams we evaluated
were outside these ranges. Of course, any evaluation on the opti-
mal number of clusters must be measured by the value to the
design team processes.

Although not trivial, we will explore the possibility of using
image extraction methods to extend the functionality of our
method to use the sketch image in the half-sheet template in addi-
tion to the text in the concept description to add flexibility to our
method, thus increasing its usefulness for design teams.

Our primary future research, however, will focus on interven-
tions with product development teams that show patterns of over-
and/or under-clustering in order to better understand how machine
learning on clustering could support design teams to improve the

Fig. 7 Sample HM plot of team 1

Fig. 8 Overview of under-clustering shown in teams’ HM plots. Example: team 4 generated
12 concepts in cluster “children friendly designs” which the algorithm broke into six smaller
clusters.
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design process. Pilot tests with student teams in a Spring 2017
new product development class (ME 200)—similar to Fall 2016’s
ME 300—showed promising results in terms of student response
to how they might use the HM plots. Two teams (out of 15 teams
in the class) volunteered to participate in a pilot study. For exam-
ple, one member of a team with a pattern of over-clustering recog-
nized the challenges the team faced in clustering: “During the
concept generation stage, we had the crazy ideas we couldn’t

categorize which couldn’t fit in the categories. Categories are
automatically restrictive, so when we had crazy ideas, the catego-
ries really don’t go together, so we ended up having big “others”
(or miscellaneous things) which had everything that would fit. So I
kind of like what has been done [in regards to the machine-
generated clusters] to ‘others’.”

A member of the other team that “under-clustered” commented:
“In terms of concept generation, it might help toward the areas

Table 6 Example of under-clustering pattern for team 4

Concept index Concept name Human label Machine label

27 Children’s energy playground Children friendly designs Energy; heat
29 Corn maze setup Children friendly designs Field; maze
25 Obstacle course Children friendly designs Obstacle course
26 Playground sailboat Children friendly designs Playground sailboat
21 Hot air balloon oscillator Children friendly designs Wind; device
22 Air dancer generator Children friendly designs Wind; device
23 Children spinning toy design Children friendly designs Wind; device
30 Fancy hat Children friendly designs Wind; device
31 Propeller cap Children friendly designs Wind; device
24 Swing set Children friendly designs Wind; generator
28 Teeter totter generator Children friendly designs Wind; generator
32 Oscillating wind sock Children friendly designs Wind; generator

Fig. 9 Overview of over-clustering shown in teams’ HM plots. Example: team 3 created two
clusters “outside exercise” and “cycling” but the algorithm combined these into one larger
cluster.

Table 7 Example of over-clustering pattern for team 3

Concept index Concept name Description Human label Machine label

51 Hiking challenge app An app that sets challenges for nearby hikes such as
hike to top of grizzly peak in x amount of time use

wearables to track

Outside exercise App; challenge

56 Biking challenge app Similar to hiking challenge app but focused on
cyclists

Cycling App; challenge
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you might want to focus on, like the big bubbles, or other areas
where there is nothing.… we can either pick out the best out of
the list to pursue, or we can read through this and pick out the best
part of each and come up with one better concept along with the
concepts we already have.”

Beyond the concept generation phase, improved clustering may
also be useful in the convergent concept selection phase of product
design to combine features across multiple concepts with similar
functionality to get an improved design. Concept selection methods
that build on concept clustering have only been lightly explored in
the field of product development [15]. Thus, future plans for this
work will focus on integrating our machine-learning model to con-
sider both concept generation and selection processes together.
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