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Abstract—Maximising electricity production from wind re-
quires improvement of wind turbine reliability. Component
failures result in unscheduled or reactive maintenance on turbines
which incurs significant downtime and, in turn, increases pro-
duction cost, ultimately limiting the competitivenes of renewable
energy. Thus, a critical task is the early detection of faults. To this
end, we present a framework for fault detection using machine
learning that uses Supervisory Control and Data Acquisition
(SCADA) data from a large 3MW turbine, supplemented with
features derived from this data that encapsulate expert knowledge
about wind turbines. These new features are created using
application domain knowledge that is general to large horizontal-
axis wind turbines, including knowledge of the physical quantities
measured by sensors, the approximate locations of the sensors,
the time series behaviour of the system, and some statistics
related to the interpretation of sensor measurements. We then
use mRMR feature selection to select the most important of these
features. The new feature set is used to train a support vector
machine to detect faults. The classification performance using the
new feature set is compared to performance using the original
feature set. Use of the new feature set achieves an f1-score of
90%, an improvement of 27% compared to the original feature
set.
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I. INTRODUCTION

Renewable energy generation is becoming increasingly im-
portant. For example, under the EU Renewable Energy Direc-
tive, Ireland needs to reach a binding target of sourcing 16%
of its annual overall energy use from renewables by 2020. To
reach this target, 40% of Ireland’s electricity needs to come
from renewable sources, for which the vast majority of this
target will be met by wind energy [1].

However, wind turbines see highly irregular loads due
to varied and turbulent wind conditions, and as a result,
components can undergo high stress throughout their lifetime
compared with other rotating machines [2]. Because of this,
operations and maintenance account for up to 30% of the cost
of generation of wind power [3].

The ability to remotely monitor component health is even

more important in the wind industry than in other industries;
wind turbines are often deployed to operate autonomously in
remote sites so periodic visual inspections can be impractical.
Unexpected failures on a wind turbine can be very expensive
- corrective maintenance can take up a significant portion of a
turbine’s annual maintenance budget. Condition-based mainte-
nance (CBM) is a strategy whereby the condition of equipment
is actively monitored to detect impending or incipient faults,
allowing an effective maintenance decision to be made as
needed. This strategy can save up to 20-25% of maintenance
costs vs. scheduled maintenance of wind turbines [4].

Machine learning approaches to CBM of wind turbines
include principal component analysis and neural networks or
other pattern recognition methods, usually applied to high
resolution data from retrofitted vibration or oil particulate
sensors. One such approach used a modified version of the
classification method K nearest neighbors on 100Hz sampled
data from a simulated benchmark model of a wind turbine [5].

Although Condition Monitoring Systems (CMSs) have been
widely successful in other applications, CBM has not been
taken up extensively by the wind industry, despite the supposed
benefits [4]. A number of reasons exist for this [6], [7]. The
capital cost of retrofitting sensors, as well as data collection
and analysis can be quite high - upwards of AC13,000 per
turbine.

However, there already exist a number of sensors on modern
turbines related to the Supervisory Control and Data Acqui-
sition (SCADA) system. In recent years, there has been a
concerted effort to apply condition monitoring (CM) tech-
niques to wind turbines by analysing data collected by the
SCADA system. SCADA data is typically recorded at 10-
minute intervals to reduce transmitted data bandwidth and
storage, and includes a plethora of measurements such as
active and reactive power, generator current and voltages, wind
speed, generator shaft speed, generator, gearbox and nacelle
temperatures, and others [2]. By performing statistical analyses
on various trends within this data, it is possible to detect when
the turbine is entering a time of sub-optimal performance or if



a fault is developing. This is all done without the added costs
of retrofitting additional sensors to the turbine [6].

Previous work by the authors involved predicting wind
turbine faults using classification methods applied to 10-
minute SCADA data [8]. This paper aims to improve pre-
diction scores by expanding the SCADA data features with
features derived from wind turbine domain knowledge. These
additional features are based on 1) an understanding of the
physical values measured by the SCADA sensors, 2) the time
series behaviour of the sensor measurements, and 3) statistical
features. Feature selection methods are then applied to this
expanded feature set to select the most important overall
features and to validate whether the new features selected are
more useful for prediction than the original ones. Next, support
vector machines (SVMs) are trained using both the expanded
feature set and the original SCADA data set to predict faults.
The prediction results of the expanded feature set are then
compared with the results of using only the SCADA data.

This paper is organised as follows: In section II, a descrip-
tion is given of the data. Section III describes the proposed
approach. Section IV reports the experimental results. Section
V summarises the conclusions.

II. DATA

A. Data Source

Data is collected from a 3 MW direct-drive wind turbine
near the coast in the South of Ireland for an 11-month period
from May 2014 - April 2015. This wind turbine supplies power
to a major biomedical devices manufacturing plant. The data
is downloaded from the wind turbine’s SCADA system and
is comprised of three separate datasets: “operational” data,
“status” data, and “warning” data.

The “operational” data has 54 features with a sampling
resolution of every 10 minutes. These features include wind
speed, ambient temperature, power characteristics such as real
and reactive power, and temperatures of components in the
wind turbine such as the generator bearing and rotor. For
some of the quantities above, the features include the average,
minimum and maximum over the 10 minute period. A sample
of this data is shown in Table I.

The “status” and “warning” data is used to create labels and
to process the “operational” data. The “status” and “warning”
data are event logs, a sample of which is found in Table II. The
“status” data records changes in the status of the wind turbine.
The “warning” data is also called “information messages” and
mostly corresponds to general information about the turbine.

B. Data Pre-Processng

The “operational” data is sorted by time stamp. Samples that
are in-between the 10 minute sampling times are removed and
samples with the same time stamp are averaged. The labels
for the samples were determined based on the “status” data.

From the “warning” data, times corresponding to a sin-
gle specific warning message (main warning code “ 230 -
Power Limitation (10h)”) are removed from the “operational”
data set. This warning corresponds to slightly limited power

Table I
10 MINUTE OPERATIONAL DATA

TimeStamp Wind
Speed
(avg.)

Wind
Speed
(max.)

Wind
Speed
(min.)

Power
(avg.)

Power
(max.)

Power
(min.)

Bearing
Temp
(avg.)

m/s m/s m/s kW kW kW ◦C
09/06/2014 14:10:00 5.8 7.4 4.1 367 541 285 25
09/06/2014 14:20:00 5.7 7.1 4.1 378 490 246 25
09/06/2014 14:30:00 5.6 6.5 4.5 384 447 254 25
09/06/2014 14:40:00 5.8 7.5 3.9 426 530 318 25
09/06/2014 14:50:00 5.4 6.9 4.5 369 592 242 25

Table II
STATUS DATA

Timestamp Main
Status

Sub
Status

Status Text

13/07/2014 13:06:23 0 0 Turbine in Operation
14/07/2014 18:12:02 62 3 Feeding Fault: Zero Crossing

Several Inverters
14/07/2014 18:12:19 80 21 Excitation Error: Overvolt-

age DC-link
14/07/2014 18:22:07 0 1 Turbine Starting
14/07/2014 18:23:38 0 0 Turbine in Operation
16/07/2014 04:06:47 2 1 Lack of Wind: Wind Speed

too Low

output during nominal operation for one of a number of
reasons, including turbine noise control during certain hours,
an increase in internal temperatures on a hot day, or grid
regulation. When this message is generated, there follows a
10-hour period where turbine power output may or may not
be curtailed. Although considered a part of normal operation,
for the purposes of this study it was decided to not include
this data to give a clearer distinction for fault classification. It
may be included in future work.

Class labels were created for the “operational” data using
the “status” data. For this, a list of frequently occurring
faults was made. For these faults, status messages with codes
corresponding to the faults were selected. The start and end
of these turbine states were used to match up the associated
10-minute operational data.

The wind turbine faults included in this data set are: feeding
faults, excitation errors, mains failure, aircooling malfunc-
tion and generator heating faults. While the types of faults
present in the data affect the features that are selected in
the feature selection process, the methodology presented here
can be applied to other faults. Feeding faults refer to faults
in the power feeder cables of the turbine, excitation errors
refer to problems with the generator excitation system, mains
failure refers to problems with mains electricity supply to the
turbine, malfunction aircooling refers to problems in the air
circulation and internal temperature circulation in the turbine,
and generator heating faults refer to the generator overheating.
Thus, five types of faults are included in this data set. There
are 213 occurrences of faults during the observation period,
resulting in a total of 437 fault data samples.

The data is normalised and balanced class weights are used
for training of machine learning models. There are a total of
54 original features.



III. METHODOLOGY

A. Overview

The “operational” data and corresponding features collected
from the wind turbine are supplemented with additional fea-
tures derived from the “operational” data based on domain
knowledge. This process, shown in Figure 1, is novel in that
it does not simply use the original sensor data treated as inde-
pendent samples, but also includes time series characteristics
and application domain knowledge; Furthermore, the original
data is combined with this new knowledge in a simple form
that is appropriate as input into numerous machine learning
algorithms — a data matrix X of n rows of samples and m
columns of features.

Figure 1. X and Y for machine learning models

B. Application Domain Knowledge Features

The original features in the “operational” data are supple-
mented with new features created from the original features
using knowledge of wind turbines, namely, knowledge of
the quantities that the original features correspond to; the
location of where data for those features is collected; and
an understanding of the operation of the wind turbine. For
example, given knowledge that there are two nacelle ambi-
ent temperature features that correspond to the two ambient
temperature sensors on the nacelle, it is expected that the
two temperatures would have similar values. Thus, a new
feature is the difference between the two nacelle temperatures,
made possible because the original features have the same
units. This and other instances of domain knowledge were
acquired through interviewing wind turbine manufacturers and
independent service provides, previous work experience in the
wind industry, and basic science and engineering knowledge.

A summary of the new features derived from the original
features using domain knowledge is shown in Table III, which
represents 67 additional derived features.

C. Time Series Features

The wind turbine is a physical system and it is known that
the original features and derived features are physical quan-
tities that form time series, hence timestamped “operational”
data samples are not independent from one another. It is desir-
able to have the machine learning model work across time and
to include correlation across sample columns. To that end, the
“operational” data samples are converted to rolling time series
representations of one hour using lagged features. The use of

Table III
EXAMPLE FEATURES FROM KNOWLEDGE OF WIND TURBINES

Average Front and Rear Bearing Temperatures
Of Rotor Temperatures

Stator Temperatures
...

Difference Max and Min of wind speed
Between Max and Average of wind speed

Min and Average of wind speed
Front and Rear Bearing Temperature
Nacelle Ambient Temperatures
Generator Temperature and Nacelle Temperature
...

Ratio of Average power to Available Power (from wind, technical
reasons, force majeure reasons, force external reasons)
...

lagged features allows for the approximation of derivatives, an
important aspect of physical systems. This is also similar to a
finite impulse response filter (FIR), specifically a discrete time
and digital FIR.

To represent the “operational” data as time series, lagged
features — also called delays — for each original feature are
created to include the data from time t − 60min to t. For
example, if the original feature “Nacelle Ambient Temp” is
at time t and the sampling resolution is 10 minutes, one new
feature is “Nacelle Ambient Temp at time t−10min”, another
new feature is “Nacelle Ambient Temp at time t − 20min”,
etc. all the way to “Nacelle Ambient Temp at time t−60min”.
This results in 324 time-lagged features.

D. Statistical Features

Statistical features are created from the original features.
The first statistical feature is the 2-hr rolling average. For
example, the rolling average of “Nacelle Ambient Temp” at
sample time t is the average of “Nacelle Ambient Temp”
between t − 2hr to t. The rolling average is also a finite
impulse response filter commonly called a boxcar filter. This
has the benefit of suppressing high frequency noise. The
second statistical feature is the 2-hr rolling standard deviation,
together resulting in 108 statistical features.

E. Feature Selection

Given that the number of features are greatly increased,
the mutual information based minimal-redundancy-maximal-
relevance criterion (mRMR) feature selection method is used
to find a subset of features useful for prediction of the faults.
mRMR reduces redundancy in the features and selects those
most relevant to prediction [9]. Both Mutual Information
Difference (MID) and Quotient (MIQ) schemes are used.

F. Machine Learning

To see if the new derived features improve fault detection
performance, support vector machines (SVMs) are trained
using the new feature set and the original feature set for
different numbers of features. The measured data is randomly
separated into training and testing sets with 80% of the data
in the training set and 20% of the data in the testing set.
To train each SVM, a randomised grid search is performed



Table IV
TOP 10 FEATURES SELECTED BY MRMR UNDER THE MIQ AND MID

SCHEME WITH FEATURE RANKINGS

Feature MIQ MID
Difference between P technical and P external 1 1
System 1 inverter 1 cabinet temp t-30min 2 NA
2hr mean of average blade angle A 3 NA
2hr stddev of spinner temp 4 NA
Difference between P technical and P majeure 4 NA
2hr mean of RTU ava Setpoint 1 6 2
2hr stddev of rear bearing temp 7 3
2hr mean of rotor temp 1 8 NA
Difference between avg Power and P from wind 9 NA
Average Nacel position including cable twisting t-60min 10 9
Difference between rotor temps NA 4
Difference between P from wind and P technical NA 5
Min windspeed t-60min NA 6
Min windspeed t-20min NA 7
Difference between nacelle ambient temps NA 8
Difference between average and min rotation NA 10

over hyperparameters using 10-fold cross validation to find the
hyperparameters which yielded the highest F1 classification
score. The hyperparameters that are searched over are C, γ,
and the kernel. For each variation in the number of features,
five SVMs are trained. From among the five SVMs, the SVM
with the highest F1 score on the training set is used to predict
on the testing set.

IV. RESULTS AND DISCUSSION

A. Selected Features

In the feature selection process, the new derived features
are favoured more than the original features. The top ten
features as selected by mRMR under the MIQ and MID
schemes are shown in Table IV. All of the top ten features
are new features. Furthermore, all the different types of new
features — application domain knowledge features, time series
features, and statistical features — are among the top ten
features. There is some overlap between the features selected
under the MIQ and MID schemes. Differences in rankings and
selected features are expected because to select the features,
the MIQ scheme uses a quotient while the MID scheme uses
a difference.

Figure 2 plots the number of new derived features among the
features selected by mRMR under the MIQ and MID schemes,
along with their respective rankings. The dotted red line traces
the expected curve if all the top features are new derived
features. The actual curves follow this reference line closely.
The deviations of the curves from the dotted reference line
are the number of original features among the top selected
features. This deviation is less than the number of original
features selected if features were selected randomly from the
new feature set.

Among the selected features, the derived features are often
ranked higher than the features that they are derived from.
The histogram in Figure 3 tallies the differences in rankings
between the new derived features and their respective original
features. To create Figure 3, the original features are binned

Figure 2. Number of new features among the top features with a dotted
reference line indicating the expected line if all the features were new features

Figure 3. Histogram of relative ranking between original features and binned
features

together with their derived features. That is, features associated
with the same original sensor reading are grouped together into
a bin. The feature selection ranking of the first derived feature
selected from that bin is compared to the feature selection
ranking of the original feature by calculating the difference
between the rankings. For example, if the standard deviation
of “rear bearing temp” is the first derived feature selected
from the “rear bearing temp” bin and has a ranking of 4,
and the “rear bearing temp” feature has a ranking of 54,
then the relative ranking is 50. Positive differences in ranking
indicate that the derived feature is ranked higher than the
original feature that it was derived from. The magnitude of
the difference indicates how many rankings higher the derived
feature is ranked compared to its original feature.

In Figure 3, all the ranking differences are positive, indi-
cating that derived features are selected before the original
features that they are derived from. Furthermore, the derived
features are sometimes ranked substantially higher than the
original features, with ranking differences in the hundreds.



B. Model Prediction Results

Inclusion of the new derived features shows improvement
in classification scores over the use of the original feature set
for classification of faults and no-faults.

The classification results from training SVMs using different
feature sets are shown in Figure 4. Figure 4 plots performance
metrics on the y-axes for the ‘fault’ class of: F1 score on the
first row of graphs, precision on the second row of graphs,
and recall on the third row of graphs. The first column of
graphs is the scores on the training set and the second column
of graphs is the scores on the testing set. The x-axis is the
number of features used in the SVM. Our ultimate goal is to
save money and reduce computation time with fewer sensors
and fewer features. From Figure 4, it is apparent that most
of the benefit to prediction performance is already realized
around 40 features, when the performance metrics plateaus,
and thus the x-axis is not extended further.

The horizontal dotted red lines sketch out the classification
scores for an SVM trained on the original features in the
“operational” data set: an F1 score of 63%, precision of 77%,
and recall of 53%. Values above the horizontal dotted red
reference lines show classification performance better than
performance achieved using the original features.

The vertical dotted red line traces the number of features
in the original feature set; there are 54 features in the original
feature set. Values to the left of the dotted red line indicate
the use of fewer features than in the original feature set.

The solid blue line and dashed green lines plot the classifi-
cation scores of SVMs trained using features from the new
feature set as selected by mRMR under the MIQ scheme
and the MID scheme respectively. Features selected using the
MIQ scheme result in better classification scores than features
selected using the MID scheme. This is observed in how the
MIQ lines are higher than the MID lines.

Using new derived features selected by mRMR under the
MIQ scheme, the same F1 score and precision as the original
feature set is achieved using approximately two-thirds of the
original number of features. Furthermore, improved recall
is attained using as few as 20% of the original number of
features.

When using a similar number of features as the original
feature set, the F1 score improves by 19%, the precision by
7% and the recall by 28% on the test set. Even with 75%
of the number of features, the F1 score is higher by 13%.
The F1 score reaches 90% when 90 features from the new
feature set are used, which is an improvement in F1 score of
27%. The selected features are likely to be dependent upon
the wind turbine faults that are present in the dataset, and can
be expected to vary with specific wind turbine faults.

These classification performance results demonstrate that
the proposed procedure for incorporating expert domain
knowledge can not only improve fault detection performance
but can do so using fewer features. The use of fewer features
enables savings from decreased data collection needs — such
as from sensors, instrumentation, installation, networking, data

quality, and data transfer needs — as well as avoiding prob-
lems that arise from machine learning on high dimensional
data, such as large computation times and resource needs.
The number of features used in an implementation of this
fault detection system will thus be based on the desired trade-
off between improved fault detection performance and data
collection and computation costs.

V. CONCLUSION

The methodology proposed in this paper to incorporate
expert knowledge by creating new features from existing
sensor data enables higher classification scores and improved
detection of faults while using fewer features — an improve-
ment in F1 score of almost 20% while using a similar number
of features, up to 27% with more features, and even an increase
of 13% is possible while using only 75% as many features as
in the original feature set. These improvements are seen using
only basic, general knowledge of wind turbines that is not
specific to the particular wind turbine installation.

The use of fewer features helps address problems that
arise from a large number of dimensions, while saving data
collection costs. Another benefit is that this approach allows
for flexibility in the choice of machine learning algorithm
because the data sets are in a format suitable for input into a
wide variety of machine learning algorithms. Future work can
explore the use of this methodology of incorporating domain
knowledge using other machine learning algorithms.

Another avenue of investigation is to try other feature selec-
tion methods, particularly feature selection methods that take
into account the correlation between features. Future research
is also needed to explore how features selected by feature
selection methods may be dependent on the faults present
in the data. To investigate this behaviour, feature selection
can be conducted on individual types of faults to investigate
which features are good predictors for which faults. Additional
research is also needed using more faults and different faults.

The proposed methodology can be applied to fault detection
in other applications, such as other turbines, solar panels, and
buildings. It would be interesting to compare and contrast
performance and adapt this methodology across applications.
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