When Will it Break?

BEST lab 30 year reunion

in honor of Alice Agogino UC Berkeley

Kai Goebel, Ph.D.
kai.goebel@nasa.gov
http://prognostics.nasa.gov
8. Aug, 2015

Stuff breaks

Image credit: http://www.improvisedlife.com/2014/03/19/dept-impermanence/#lightbox/2/

What can we do about it?

Image credit: http://www.ebay.com/itm/JDM-Band-Aid-Decal-Vinyl-Bandage-cover-dents-dings-funny-sticker-decal-DRIFT-CAR-/391149550941

Prediction

Image credit: http://www.pinetarpress.com/wp-content/uploads/2013/03/crystalball1.jpg

Prognostics

Application Examples

Electro-Mechanical Actuators

Electrochemical Storage

- Electronics
- Valves, Pumps
- Composite Materials
- Solid Rocket Motor Casing
- Rover
- UAV
- Wind Turbines
- Biomass

• last slide

Case Studies

OCO

DART

SBIRS

MPL

Deep Space 2

Mars Global Surveyor

Apollo 13

Space Shuttle

Source: http://www.popsci.com/military-aviation-amp-space/gallery/2009-03/top-10-nasa-probe-failures http://www.gerhards.net/albums/spaceshuttle/SpaceShuttle.jpg

Case Studies

Health Determination

ECG

- Are probes working well?
- How does one interpret the ECG signal?

- Do things appear to be within normal bounds?
- If not, what is the diagnosis?
- Given the diagnosis, what is the prognosis?
- Suggest therapy

ISHM

- Sensor Validation
- Feature Extraction
- Abnormal Condition Detection
- Diagnostics
- Prognostics
- Mitigation

Systems Health Management

Systems Health Management

Sensor Validation

 Acquire Data from sensors to be validated and from other sources to determine system operating mode

Estimate output of each sensor using

known/derived relationships with

- **Analytical Redundancy Relationship Network**
- R1: $\hat{P}_{11} = P_2$
- R2: $\hat{P}_{12} = C_{22}P_3 + C_{21}$
- R3: $\hat{P}_{23} = C_{32}P_3 + C_{31}$
- R4: $\hat{W}_{14} = C_{42}(P_1 P_3)^{1/2} + C_{41}$
- R5: $\hat{W}_{15} = C_{52}(P_2 P_3)^{1/2} + C_{51}$
- Detect and flag breakdown of any relationships by comparing residuals (i.e., difference between measurement if $|\hat{W}_{1,5} - W_1| \le T_5$, then R5 = qualified, else R5 = failed
- & estimate) to pre-defined thresholds
- **Decide** if sensor has failed based on number and frequency of failed relationships
- **Disqualify** sensor and notify system/ user

if $ \hat{P}_{1,1} $	- <i>I</i>	$ P_1 \leq 7$	「₁, tŀ	nen R1 = c	ualifie	d, else	R1 = fa	iled
	:							
ر آر آر		147	_	41 D.E	P	داء اءاء	- DE	c - :1.

No. Active ARRs for a Signal	No. Failed ARRs Required to Disqualify the Signal
3	3
4	4
5	4

other sensors

Systems Health Management

Feature Extraction

Questions:

- How do we extract information (features) from raw sensor data?
- How do we extract useful features from raw sensor data?
- How do we select the best features from raw data in order to detect and identify fault (failure) modes?
- How do we select the best features from raw data in order to predict remaining life?

Feature Extraction

- Good features have the following attributes:
 - 1. Explainable in physical terms
 - 2. High correlation with fault/fault progression
 - 3. Mathematically definable
 - 4. Characterized by large interclass mean distance and small interclass variance
 - 5. Uncorrelated with other features
 - 6. Insensitive to extraneous variables
 - 7. Computationally inexpensive to measure

Where is the Information?

- Relating fault (failure) mechanisms to the fundamental physics of complex dynamic systems
- Fault (failure) modes induce changes in:
 - The energy (power) of the system
 - Its entropy
 - Power spectrum
 - Signal magnitude
 - Chaotic behavior
 - Other

How do we get the Information?

- How are system functional changes (symptoms) monitored or measured in terms of measurable system states (outputs)?
- Measurable quantities:
 - Vibration
 - Temperature
 - Pressure
 - Etc.
- Extracting information
 - Time domain
 - Frequency domain
 - Chaotic domain

Features of Features

- Derived Features (or Features of Features)
 - Continue further processing of primary features in order to arrive at unique, uncorrelated (distinguishable) fault (failure) signatures.
- Examples
 - Statistical moments (Skewness, Kurtosis)
 - Linear/non-linear combinations of features
- The Tools
 - Genetic Programming
 - Genetic Algorithm
 - Other optimization tools

Transforms

Fourier transform

 Sines and cosines as basis functions

$$F(\omega) = \int_{-\infty}^{\infty} f(t) e^{-j\omega t} dt$$

 In transforming to the frequency domain, time information is completely lost

Wavelet transform

 Infinite possible basis functions

$$F(a,b) = \frac{1}{\sqrt{a}} \int_{-\infty}^{\infty} f(t) \psi(\frac{t-b}{a}) dt$$

 A systematic windowing technique with variable-sized windows (dictated by a)

What are wavelets?

- Signal analysis technique complementary to traditional Fourier analysis
- Represent signal as linear combination of scaled and shifted versions of some generic function called the 'wavelet function of the mother wavelet'
 - Fractal-like
- Retains frequency information on a time-specific basis using varying resolutions or scales
 - Addresses the time-frequency tradeoff
 - Large scale amplifies gross signal features
 - Small scale amplifies finer signal features
 - Perception-like
- Best suited for detection of spikes, singularities and transients

Systems Health Management

Anomaly Detection

 Are the last five points indicative of abnormal condition?

Rank Permutation Test

 Transform features from "raw feature space" to "rank permutation probability space"
 raw ranks

raw 20 18 18 16 Series1 16 14 14 Series2 12 12 10 10 8 6

Perform hypothesis test in rank space

Permutation Test

- 1. Determine a testable null hypothesis
- 2. Choose a test statistic
 - here: sum of ranks

- 3. Compute the test statistic for the original observations
- Permute the observations, and recalculate the test statistic;
 repeat
- Accept or reject null hypothesis using permutation distribution

Rank Permutation Test

Advantages

- Boosts classification rate by making events that are statistically improbable more pronounced
- Diminishes the effect of noise and outliers
- Permits pre-calculation of permutation distribution
 - Important for real time applications with limited computing power
- Computation becomes mostly a vector sorting

Performance Measures

Systems Health Management

Inference System

Multi-valued Sets

- Binary Logic vs. Multi-valued Logic:
- •Sets with crisp and non-crisp boundaries, respectively

A = Set of tall people

Capturing Uncertainty

 Partitions formed by the linguistic values "young", "middle aged", and "old":

Single Rule, Single Antecedent

- Graphical Representation:
 - find degree of match w between $\mu_A(x)$ and $\mu_{A'}(x)$
 - intuitively: degree of belief for antecedent which gets propagated; result should be not

Reasoning

Single rule with multiple antecedents

Facts: x is A' and y is B'

Rule: if x is A and y is B then z is C

Conclusion: z is C'

$$\mu_{C'}(z) = \bigvee_{x,y} \left[\mu_{A'}(x) \wedge \mu_{B'}(y) \right] \wedge \left[\mu_{A}(x) \wedge \mu_{B}(y) \wedge \mu_{C}(z) \right]$$

$$= \bigvee_{x,y} \left[\mu_{A'}(x) \wedge \mu_{B'}(y) \wedge \mu_{A}(x) \wedge \mu_{B}(y) \right] \wedge \mu_{C}(z)$$

$$= \left\{ \bigvee_{x} \left[\mu_{A'}(x) \wedge \mu_{A}(x) \right] \right\} \wedge \left\{ \bigvee_{x} \left[\mu_{B'}(y) \wedge \mu_{B}(y) \right] \right\} \wedge \mu_{C}(z)$$

$$= \left(\bigvee_{x} \left[\psi_{A'}(x) \wedge \mu_{C}(z) \right] \right)$$
firing strength

Reasoning

Graphical representation:

Transform: multi-valued to crisp

Center of Area

- + intuitive
- + smooth
- comp. burden

$$z_{COA} = \frac{\int_{z} \mu_{A}(z) z dz}{\int_{z} \mu_{A}(z) dz}$$

Systems Health Management

Prediction

Prognostics

Definition: Predict damage progression of a fault based on current and future operational and environmental conditions to estimate the time at which a component no longer fulfils its function within desired specs ("Remaining Useful Life")

Motivation

- Key to condition-based maintenance
 - Improve mission safety
 - Avoid shutdowns/launch scrap
 - Reduce unscheduled maintenance
 - Improved operational efficiency
- Challenges
 - Examples of fault progression are difficult to find due to periodic maintenance and component replacement
 - Sensor noise makes it hard to distinguish small, gradual deviations in performance
 - Limited sensor sets
 - e.g., only discrete open/closed sensors for valves

Key Ingredients for Prognostics

- Run-to-failure data
 - Measurement data
 - Ground truth data
 - Operational conditions
 - Load profiles
 - Environmental conditions
 - Failure threshold
- Physics of Failure models
 - For each fault in the fault catalogue
- Uncertainty information
 - Sources of uncertainty
 - Uncertainty characterization

Prognostic Algorithms

- Data-driven algorithms rely on large run-to-failure data sets
 - Learn health progression from examples
 - Large set of run-to-failure trajectories needed to correctly train algorithm
 - Need to deal with loss of sensors or lack of sensors
- Model-based approaches exploit domain knowledge in the form of a model
 - Use physics knowledge of components and their failures
 - Viable approach when large data sets are not available
 - Can be robust to sensor loss and still work under limited sensing environments
 - Same general approach may be applied to any component/system, only the model changes

Prognostics Architecture

Case Study

- Shuttle refueling operation
 - Liquid fuels
 - Cryogenic environment
 - Legacy equipment

Case Study

- Apply framework to pneumatic valve
 - Complex mechanical devices used in many domains including aerospace

Failures of critical valves can cause significant effects on system function

- Pneumatic valve operation
 - Valve opened by opening bottom port to supply pressure and top port to atmosphere
 - Valve closed by opening bottom port to atmosphere and top port to supply pressure
 - Return spring ensures valve will close upon loss of supply pressure

Case Study

Faults

- External leaks at ports & internal leaks across piston
- Friction buildup due to lubrication breakdown, sliding wear, buildup of particulate matter
- Spring degradation

Defining EOL

- Limits defined for open and close times of valves
 - E.g., main fill valve opens in 20 seconds (26 req.), closes in 15 (20 req.)
- Limits placed on valve leakage rates (pneumatic gas)
- Valve must be able to fully close upon fail-safe
- Valve is at EOL when any of above conditions violated (defines C_{FOI})
 - Function of amount of damage, parameterized in model

Physics-based Modeling

Valve state defined by

$$\mathbf{x}(t) = \left[\begin{array}{c} x(t) \\ v(t) \\ m_t(t) \\ m_b(t) \end{array} \right] \begin{array}{c} \text{Valve position} \\ \text{Valve velocity} \\ \text{Gas mass above piston} \\ \text{Gas mass below piston} \end{array}$$

State derivatives given by

$$\dot{\mathbf{x}}(t) = \left[\begin{array}{c} v(t) \\ \frac{1}{m} \sum F(t) \\ f_t(t) \\ f_b(t) \end{array}\right] \begin{array}{c} \text{Velocity} \\ \text{Acceleration} \\ \text{Gas flow above piston} \\ \text{Gas flow below piston} \end{array}$$

Inputs given by

$$\mathbf{u}(t) = \begin{bmatrix} p_l(t) \\ p_r(t) \\ u_t(t) \\ u_b(t) \end{bmatrix} \begin{array}{l} \text{Fluid pressure (left)} \\ \text{Fluid pressure (right)} \\ \text{Input pressure at top port} \\ \text{Input pressure at bottom port} \\ \end{array}$$

Physics-based Modeling: Forces

- Piston movement governed by sum of forces, including
 - Pneumatic gas: $(p_b(t) p_t(t))A_p$
 - Process fluid: $(p_r(t) p_l(t))A_v$
 - Weight: -mg
 - Spring: $-k(x(t) x_o)$
 - Friction: -rv(t)

$$p_t(t) = \frac{m_t(t)R_gT}{V_{t_0} + A_p(L_s - x(t))}$$

$$p_b(t) = \frac{m_b(t)R_gT}{V_{b_0} + A_px(t)}$$

- Contact forces:
$$\begin{cases} k_c(-x), & x < 0 \\ 0, & 0 \le x \le L_s \\ -k_c(x-L_s), & x > L_s, & \text{Valve Stroke} \\ \text{Length} \end{cases}$$

Physics-based Modeling: Flows

Gas flows determined by choked/non-choked orifice flow equations:

$$f_t(t) = f_g(p_t(t), u_t(t))$$

$$f_b(t) = f_g(p_b(t), u_b(t))$$

$$f_g(p_1, p_2) = \begin{cases} C_s A_s p_1 \sqrt{\frac{\gamma}{ZR_g T}} \left(\frac{2}{\gamma + 1}\right)^{(\gamma + 1)/(\gamma - 1)}, & p_1 \ge p_2 \wedge p_1/p_2 \ge \left(\frac{\gamma + 1}{2}\right)^{\gamma/(\gamma - 1)} \\ C_s A_s p_1 \sqrt{\frac{2}{ZR_g T}} \left(\frac{\gamma}{\gamma - 1}\right) \left(\left(\frac{p_2}{p_1}\right)^{2/\gamma} - \left(\frac{p_2}{p_1}\right)^{(\gamma + 1)/\gamma}\right), & p_1 \ge p_2 \wedge p_1/p_2 < \left(\frac{\gamma + 1}{2}\right)^{\gamma/(\gamma - 1)} \\ C_s A_s p_2 \sqrt{\frac{\gamma}{ZR_g T}} \left(\frac{2}{\gamma + 1}\right)^{(\gamma + 1)/(\gamma - 1)}, & p_1 < p_2 \wedge p_2/p_1 \ge \left(\frac{\gamma + 1}{2}\right)^{\gamma/(\gamma - 1)} \\ C_s A_s p_2 \sqrt{\frac{2}{ZR_g T}} \left(\frac{\gamma}{\gamma - 1}\right) \left(\left(\frac{p_1}{p_2}\right)^{2/\gamma} - \left(\frac{p_1}{p_2}\right)^{(\gamma + 1)/\gamma}\right), & p_1 < p_2 \wedge p_2/p_1 < \left(\frac{\gamma + 1}{2}\right)^{\gamma/(\gamma - 1)} \end{cases}$$

Fluid flow determined by orifice flow equation:

$$f_v(t) = \frac{x(t)}{L_s} C_v A_v \sqrt{\frac{2}{\rho} |p_{fl} - p_{fr}|} \operatorname{sign}(p_{fl} - p_{fr})$$

Pneumatic Valve Modeling

Possible sensors include

$$\mathbf{y}(t) = \begin{bmatrix} x(t) \\ p_t(t) \\ p_b(t) \\ f_v(t) \\ open(t) \\ closed(t) \end{bmatrix} \begin{array}{l} \text{Valve position} \\ \text{Gas pressure (top)} \\ \text{Gas pressure (bottom)} \\ \text{Fluid flow} \\ \text{Open indicator} \\ \text{Closed Indicator} \\ \end{array}$$

Valve position **Closed Indicator**

where,

$$open(t) = \begin{cases} 1, & \text{if } x(t) \ge L_s \\ 0, & \text{otherwise} \end{cases}$$

$$closed(t) = \begin{cases} 1, & \text{if } x(t) \le 0 \\ 0, & \text{otherwise} \end{cases}$$

Modeling Damage

Increase in friction

- Based on sliding wear equation
- Describes how friction coefficient changes as function of friction force, piston velocity, and wear coefficient

Degradation of spring

- Assume form similar to sliding wear equation
- Describes how spring constant changes as function of spring force, piston velocity, and wear coefficient

Growth of internal leak

- Based on sliding wear equation • Describes how leak size
- changes as function of friction force, piston velocity, and wear coefficient

$$\dot{A}_i(t) = w_i | F_f(t) v(t) |$$

- Based on environmental factors such as corrosion
- Assume a linear change in absence of known model

$$\dot{A}_e(t) = w_i |F_f(t) v(t)|$$
 $\dot{A}_e(t) = w_e$

$$\dot{r}(t) = w_r | F_f(t) v(t) |$$

$$\dot{r}(t) = w_r |F_f(t)v(t)| \quad \dot{k}(t) = -w_k |F_s(t)v(t)| \quad \dot{A}_i(t) = w_i |F_f(t)v(t)|$$

Damage Progression

Damage Estimation

 Wear parameters are unknown, and must be estimated along with system state

 $\mathbf{x}(t) = \begin{bmatrix} x(t) \\ v(t) \\ w(t) \\ m_t(t) \\ m_b(t) \\ r(t) \\ k(t) \\ A_i(t) \\ A_{e,t}(t) \\ A_{e,b}(t) \end{bmatrix} \begin{array}{l} \text{Position} \\ \text{Velocity} \\ \text{Gas mass above piston} \\ \text{Gas mass below piston} \\ \text{Friction coefficient} \\ \text{Spring rate} \\ \text{Internal leak area} \\ \text{External leak area} \\ \text{External leak area} \\ \text{External leak area} \\ \text{External leak area} \\ \text{Spring wear} \\ \text{Spring we$ Augment system state with unknown parameters and use state observer External leak area (bottom) $m{ heta}(t) = \left[egin{array}{c} w_r(t) \\ w_k(t) \\ w_i(t) \\ w_{e,t}(t) \\ w_{e,t}(t) \end{array}
ight]$ Friction wear Spring wear Internal leak wear External leak wear (top) External leak wear (bottom)

Particle Filters

- Employ particle filters for joint state-parameter estimation
 - Represent probability distributions using set of weighted samples
 - Help manage uncertainty (e.g., sensor noise, process noise, etc.)
 - Similar approaches have been applied successfully to actuators, batteries, and other prognostics applications

Damage Estimation with Particle Filters

- Particle filters (PFs) are state observers that can be applied to general nonlinear processes with non-Gaussian noise
 - Approximate state distribution by set of discrete weighted samples:

$$\{(\mathbf{x}_k^i, \boldsymbol{\theta}_k^i), w_k^i\}_{i=1}^N$$

- Suboptimal, but approach optimality as $N \rightarrow \infty$
- Parameter evolution described by random walk:

$$\theta_k = \theta_{k-1} + \xi_{k-1}$$

- Selection of variance of random walk noise is important
- Variance must be large enough to ensure convergence, but small enough to ensure precise tracking
- PF approximates posterior as

$$p(\mathbf{x}_k, \boldsymbol{\theta}_k | \mathbf{y}_{0:k}) \approx \sum_{i=1}^N w_k^i \delta_{(\mathbf{x}_k^i, \boldsymbol{\theta}_k^i)}(d\mathbf{x}_k d\boldsymbol{\theta}_k)$$

Sampling Importance Resampling

- Begin with initial particle population
- Predict evolution of particles one step ahead
- Compute particle weights based on likelihood of given observations
- Resample to avoid degeneracy issues
 - Degeneracy is when small number of particles have high weight and the rest have very low weight
 - Avoid wasting computation on particles that do not contribute to the approximation

Prediction

Particle filter computes

$$p(\mathbf{x}_{k_P}, \boldsymbol{\theta}_{k_P} | \mathbf{y}_{0:k_P}) \approx \sum_{i=1}^{N} w_{k_P}^{i} \delta_{(\mathbf{x}_{k_P}^{i}, \boldsymbol{\theta}_{k_P}^{i})} (d\mathbf{x}_{k_P} d\boldsymbol{\theta}_{k_P})$$

Prediction n steps ahead approximated as

$$p(\mathbf{x}_{k_P+n}, \boldsymbol{\theta}_{k_P+n} | \mathbf{y}_{0:k_P}) \approx \sum_{i=1}^{N} w_{k_P}^{i} \delta_{(\mathbf{x}_{k_P+n}^{i}, \boldsymbol{\theta}_{k_P+n}^{i})} (d\mathbf{x}_{k_P+n} d\boldsymbol{\theta}_{k_P+n})$$

Similarly, EOL prediction approximated as

$$p(EOL_{k_P}|\mathbf{y}_{0:k_P}) \approx \sum_{i=1}^{N} w_{k_P}^{i} \delta_{EOL_{k_P}^{i}} (dEOL_{k_P})$$

- General idea
 - Propagate each particle forward until EOL reached (condition on EOL evaluates to true)
 - Use particle weights for EOL weights

It'll Break at this Time:

Friction progression EOL prediction

Validation of Methodology

α-λ Performance

- Plot summarizes performance of internal leak prognosis
- Over 50% of probability mass concentrated within the bounds at all prediction points except at 20 and 30 cycles
 - Mean RULs are within the bounds at these points
- For α =0.122, metric is satisfied at all points

Some Current and Past Activities in ISHM

ROCKET ENGINE TEST STAND

HUMAN SPACE FLIGHT

Composites Shroud

ROBOTIC SPACE FLIGHT

Ground-Based Root Cause Determination; Data Analysis

CLV Crew Abort Logic Development

Ground Diagnostics for CLV and Ground Test / Integration Infrastructure

AERONAUTICS

On-board and off-board Diagnostics, Prognostics, Logistics

Space Station Fault Analysis

Solid Rocket Motor Failure Detection and Prediction

Space Shuttle Main Engine Abnormal Condition Detection

Data Analysis / Mining for

Mission Ops

Learning and Adaptation

- Our knowledge of the space environment decreases drastically as we explore beyond the earth's atmosphere
 - Practical limits to how much "a priori" knowledge can be stored on board
- Beyond earth orbit, autonomy is a critical enabler for exploration (with or without a crew)
- Science return from robotic spacecraft can be significantly increased if these spacecraft can learn from their environment and adapt
 - Serendipitous science
 - Novelty detection
 - Automated discovery
 - Accurate response to unforeseen failures

Software Complexity

% Functionality in Software in Military Aircraft

Source Lines of Code in NASA Robotic Spacecraft

- Traditional flight software certification requires exhaustive testing:
 - Of all nominal execution traces (all possible branches) of the software
 - In response to all input commands and allowable sensor values
 - Of known failure modes
- Simply not possible for health management systems of reasonable complexity
 - More R&D needed in automated verification and validation
 - Need methods and tools to V&V adaptive systems
 - Model-based software development (autocoding) to reduce cost of development and testing
 - Flight certification methods need to accommodate the unique needs of health management systems.

Decision Making

- PHM information is only a means to an end
- Integrate Diagnostic and Prognostic information with
 - Logistics
 - Fleet management/mission management objectives
 - Operations
 - **–** ...
- Path forward
 - Automated reconfiguration
 - Decision process is multi-objective dynamic optimization

Uncertainty Management

 Quantification of uncertainty is a key in being able to realize value of remaining life estimates

 Methods to quantify and manage uncertainty lacking

 Standardized metrics to express uncertainty in PHM context lacking

Closing Thoughts

- Integrated System Health Management is a systematic engineering discipline where health management principles are applied to systems
 - Seen more and more as an enabler for aerospace applications
 - Prognostics is a relatively new technology that promises to predict time-to-failure
- Ongoing activities at NASA cover range of ISHM areas
- Challenges in S&T
 - Learning and adaptive systems
 - Space is the "final frontier" for ISHM
 - Software complexity
 - V&V, certification
 - Uncertainty Management
 - · Credible methods to manage uncertainty
 - Decision Making
 - Tie-in to logistics; reconfiguration
- Implementation will be one step at a time
 - Finding the right applications is crucial
 - Ground -> Aircraft -> Robotic craft -> Human space flight
 - Increasing level of comfort and confidence over time
 - Proving benefit over cost
 - Taming software complexity

• last slide