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Stuff breaks

Image credit: http.//www.improvisedlife.com/2014/03/19/dept-impermanence/#lightbox/2/
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What can we do about it?

Image credit: http://www.ebay.com/itm/IDM-Band-Aid-Decal-Vinyl-Bandage-cover-dents-dings-funny-sticker-decal-DRIFT-CAR-/39114955094 1
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Prediction

Image credit: http.//www.pinetarpress.com/wp-content/uploads/2013/03/crystalballl.jpg
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Prognostics
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Application Examples

 Electro-Mechanical Actuators
* Electrochemical Storage

* Electronics

e Valves, Pumps
 Composite Materials
* Solid Rocket Motor Casing
* Rover i & & S
* UAV [N
* Wind Turbines
* Biomass
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e |ast slide
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Case Studies

SBIRS MPL

SBIRS Architecture

IELOCATABLE
ERMINALS

Deep Space 2 Mars Global Surveyor

Source: http://www.popsci.com/military-aviation-amp-space/qgallery/2009-03/top-10-nasa-probe-failures
http://www.gerhards.net/albums/spaceshuttle/SpaceShuttle.jpg
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Case Studies

Aloha Flight 243 Delta Flight 1288
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Health Determination
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ECG

* Are probes working well?

e How does one interpret the ECG signal?

[~ QRS duration
* Do things appear to be within normal bounds?

* If not, what is the diagnosis?
* Given the diagnosis, what is the prognosis?

e Suggest therapy

30 year BEST lab reunion, 8/8/2015  Sources: wikimedia.org, www.kappamedical.com



ISHM

 Sensor Validation
* Feature Extraction

 Abnormal Condition Detection
* Diagnostics
* Prognostics

* Mitigation
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Systems Health Management

Raw Sensor Data

Sensor Validation

Validated Data
Faulted Sensors Flagged

Feature Extraction

>( Time-stamped Features, Event Messages &/or Parametric

Data ]

Anomaly Detection/Id

Warnings & Alerts
Coarse Granularity |d (subsystem level)

Diagnostic Analysis

Subsystem Failure Modes ]
Remaining Useful
Life Estimation

Prognostic Analysis

—> Fault Accomodation

Corrective Action Identification/Reconfiguration/
Contingency Management
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Systems Health Management

Raw Sensor Data

Validated Data
Faulted Sensors Flagged

\( Time-stamped Features, Event Messages &/or Parametric
Feature Extraction ,L Data
Anomaly Detection/Id

|

—> Diagnostic Analysis >{ Subsystem Failure Modes ]

Sensor Validation

\( Warnings & Alerts
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v

—> Prognostic Analysis
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7L Contingency Management
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Sensor Validation

* Acquire Data from sensors to be
validated and from other sources to

determine system operating mode

* Estimate output of each sensor using
known/derived relationships with
other sensors

* Detect and flag breakdown of any
relationships by comparing residuals

R1: P, =P,
R2: ,31,2 = C2,2P3 + C2,1

R3: P,
R4: Vf/1,4 =C,, (P1 -P; )1/2 +Cy;
R5: VV15=C5,2(P2_P3)112+05,1

if|P,, - 7| < T, then R1 = qualified, else R1 - failed

(i.e., difference between measurement if |W,; -W,| < T, then R5 = qualified, else R5 = failed

& estimate) to pre-defined thresholds
* Decide if sensor has failed based on
number and frequency of failed
relationships
* Disqualify sensor and notify system/
user

No. Active ARRs

No. Failed ARRs Required

for a Signal to Disqualify the Signal
3 3
4 4
5 4

30 year BEST lab reunion, 8/8/2015
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@/ Systems Health Management

Validated Data
Faulted Sensors Flagged

v

. \( Time-stamped Features, Event Messages &/or Parametric
Feature Extraction ,L Data




]

Feature Extraction

e (Questions:

and identify fault (failure) modes?

remaining life?

How do we extract information (features) from raw sensor data?
How do we extract useful features from raw sensor data?
How do we select the best features from raw data in order to detect

How do we select the best features from raw data in order to predict

Birgetar BE®Tdabiteunion, 8/8/2015



Feature Extraction

* Good features have the following attributes:

1.

i

o U

Explainable in physical terms
High correlation with fault/fault progression
Mathematically definable

Characterized by large interclass mean distance
and small interclass variance

Uncorrelated with other features
Insensitive to extraneous variables
Computationally inexpensive to measure
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Where is the Information?

e Relating fault (failure) mechanisms to the
fundamental physics of complex dynamic

systems
e Fault (failure) modes induce changes in:
— The energy (power) of the system
— |ts entropy
— Power spectrum
— Signal magnitude
— Chaotic behavior
— Other

30 year BEST lab reunion, 8/8/2015



How do we get the Information?

 How are system functional changes (symptoms)
monitored or measured in terms of measurable
system states (outputs)?

 Measurable quantities:
— Vibration
— Temperature

— Pressure
— Etc.

e Extracting information
— Time domain

— Frequency domain
— Chaotic domain
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Features of Features

* Derived Features (or Features of Features)

— Continue further processing of primary features in order to
arrive at unigue, uncorrelated (distinguishable) fault
(failure) signatures.

e Examples

— Statistical moments (Skewness, Kurtosis)
— Linear/non-linear combinations of features

* The Tools
— Genetic Programming
— Genetic Algorithm
— Other optimization tools

30 year BEST lab reunion, 8/8/2015
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Transforms

Fourier transform

e Sines and cosines as
basis functions

— jart

F(w) = [Coo f(t)e 7"\t

Fourier

Analysis

Slgnal Constituent sinusolds of different frequencies

* In transforming to the
frequency domain, time
information is completely lost

Wavelet transform

e |nfinite possible basis
functions

)dt

1 o0
F(a,b) = T f S (@y(
a — OO

—
—Ah— 4

Signal Constituent wavelets of different scales and positions

Analysis

%%"*

« A systematic windowing technique
with variable-sized windows
(dictated by a)
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What are wavelets?

e Signal analysis technigue complementary to traditional Fourier
analysis

e Represent signal as linear combination of scaled and shifted
versions of some generic function called the ‘wavelet function
of the mother wavelet’

e Fractal-like

e Retains frequency information on a time-specific basis using
varying resolutions or scales

* Addresses the time-frequency tradeoff
* Large scale amplifies gross signal features
e Small scale amplifies finer signal features
* Perception-like
e Best suited for detection of spikes, singularities and transients
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Fourier
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Anomaly Detection

* Are the last five points indicative of abnormal
condition?
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Rank Permutation Test

— Transform features from “raw feature space” to

“rank permutation probability space”

— Perform hypothesis test in rank space

raw

ranks
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Permutation Test

1. Determine a testable null hypothesis o

2. Choose a test statistic
= here: sum of ranks R '“g”"“'

3. Compute the test statistic for the original observations

4. Permute the observations, and recalculate the test statistic;

repeat
5. Accept or reject null hypothesis using permutation
distribution
I cistribution of test statistic
value of original statistic

30 year BEST lab reunion, 8/8/2015 Courtesy: Neil Eklund



Rank Permutation Test

Advantages

Boosts classification rate by making events that are statistically
improbable more pronounced

e Diminishes the effect of noise and outliers

Permits pre-calculation of permutation distribution
— Important for real time applications with limited computing power

Computation becomes mostly a vector sorting

30 year BEST lab reunion, 8/8/2015 Courtesy: Neil Eklund



Performance Measures

normal non-normal

S\

False Negatives False Positives

30 year BEST lab reunion, 8/8/2015
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Inference System

Input x y

30 year BEST lab reunion, 8/8/2015



1.0

Multi-valued Sets

*Binary Logic vs. Multi-valued Logic:

*Sets with crisp and non-crisp boundaries, respectively

A = Set of tall people

Crisp set A

910" Height

Non-crisp set A

~__, Membership

function

5!10” 6,2” Height

30 year BEST lab reunion, 8/8/2015



Capturing Uncertainty

e Partitions formed by the linguistic values
“vyoung”, “middle aged”, and “old”:
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Single Rule, Single Antecedent

* Graphical Representation:

— find degree of match w between u,(x) and w,.(x)

— intuitively: degree of belief for antecedent which
gets propagated; result should be not

greater than w

A A

W.

A\

"

Xis A’
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Reasoning

Single rule with multiple antecedents
Facts: xis A”and y is B’

Rule:if xisAandyisBthenzisC
Conclusion: z is C

U (2) =V (x)

X,V L

()] Al A 215(3) & 10(2)]

A Uy

= v [0 (3) A g1 (9) A 2, (0) ()| A e 2)
={v i02) & g (D] v [ () 8 ()] 1 (2
=<w1Aw2>1 () b

firing strength
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Reasoning

e Graphical representation:

J

"

A Ai |B’ B C1
N .
A L X ya
X
W B’ B: C:
/ V \ W2
U LN N,
X T-norm @
B,
C!
[\ N,
zis C’

XisA X yisbB
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Transform: multi-valued to crisp

e Center of Area

C’ + intuitive
w‘ £ +smooth
Zcoa - comp. burden

fﬂA(Z)ZdZ

}ﬂA(Z)dZ

Zcoa =

30 year BEST lab reunion, 8/8/2015
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Prediction

30 year BEST lab reunion, 8/8/2015 Sources: weather.com; maps.google.com



Prognostics
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Definition: Predict damage progression of a fault based on current and future
operational and environmental conditions to estimate the time at which a
component no longer fulfils its function within desired specs (“Remaining
Useful Life”)
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Motivation

* Key to condition-based maintenance
— Improve mission safety
— Avoid shutdowns/launch scrap
— Reduce unscheduled maintenance
— Improved operational efficiency

* Challenges

— Examples of fault progression are
difficult to find due to periodic
maintenance and component
replacement

— Sensor noise makes it hard to
distinguish small, gradual deviations in
performance

— Limited sensor sets

* e.g., only discrete open/closed sensors
for valves

30 year BEST lab reunion, 8/8/2015



Key Ingredients for Prognostics

 Run-to-failure data
— Measurement data
— Ground truth data

— Operational conditions

» Load profiles
 Environmental conditions

— Failure threshold

* Physics of Failure models
— For each fault in the fault catalogue

» Uncertainty information
— Sources of uncertainty
— Uncertainty characterization

30 year BEST lab reunion, 8/8/2015



Prognostic Algorithms

* Data-driven algorithms rely on large run-to-failure data sets
— Learn health progression from examples

— Large set of run-to-failure trajectories needed to correctly train
algorithm

— Need to deal with loss of sensors or lack of sensors

 Model-based approaches exploit domain knowledge in the
form of a model
— Use physics knowledge of components and their failures
— Viable approach when large data sets are not available

— Can be robust to sensor loss and still work under limited sensing
environments

— Same general approach may be applied to any component/system,
only the model changes

30 year BEST lab reunion, 8/8/2015



Prognostics Architecture

System receives
inputs, produces

Estimate current

state and parameter

DU values

Fault Detection F
P(Xi Oklyox) P(EOL|yo.1)
Isolation & ——P Damage —— 9  Prediction

Identification Yk Estimation PRULYyo:)

; :

Identify active Predict EOL and

RUL as probability
distributions

damage mechanisms
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Case Study

|« Shuttle refueling operation
— Liquid fuels

— Cryogenic environment

— Legacy equipment

30 year BEST lab reunion, 8/8/2015



Case Study

* Apply framework to pneumatic valve
— Complex mechanical devices used in many domains including

aerospace
— Failures of critical valves can cause significant effects on system
function Top —_

Pneumatic Port  ~»

* Pneumatic valve operation

— Valve opened by opening bottom g
port to supply pressure and top ___-Piston
port to atmosphere Bottom ~ .

— Valve closed by opening bottom Pneumatic Port >l
port to atmosphere and top port
to supply pressure - Plug

— Return spring ensures valve will

Fluid Flow 3N
close upon loss of supply pressure \\

30 year BEST lab reunion, 8/8/2015

_ - Return Spring




Case Study

* Faults
— External leaks at ports & internal leaks across piston

— Friction buildup due to lubrication breakdown, sliding wear, buildup of particulate

matter
— Spring degradation

* Defining EOL Top -
— Limits defined for open and close Pneumatic Port
times of valves
* E.g., main fill valve opens in 20 seconds
(26 req.), closes in 15 (20 req.)
— Limits placed on valve leakage rates Bottom - _
(pneumatic gas) Pneumatic Port
— Valve must be able to fully close upon
fail-safe
— Valve is at EOL when any of above conditions Fluid Flow
violated (defines C,,,)

* Function of amount of damage, parameterized
in model

=~y O
* el

~

T

—

—

_ - Return Spring

_ - Piston

%*8
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Physics-based Modeling

e Valve state defined by

()

_ | v
x(t) = me(t)

» State derivatives given by

Wiy = | m > F(1)

* Inputs given by

| mp(t)

Valve position
Valve velocity
Gas mass above piston
Gas mass below piston

Velocity

Acceleration

Gas flow above piston
Gas flow below piston

Fluid pressure (left)

Fluid pressure (right)

Input pressure at top port
Input pressure at bottom port

30 year BEST lab reunion, 8/8/2015



Physics-based Modeling: Forces

e Piston movement governed by sum of forces,
including

— Pneumatic gas: (vo(t) —p:(t)) Ay
— Process fluid: (p-() — pu(t)) As \

— Weight: —myg pe(t) = LAGLIES

. V;go + Ap<Ls o .CC(t))
— Sprmg; —k(x(t) — x,) my(t)R,T
— Friction: —ruv(t) Bal) = Vi + Apz (1)

— Contact forces: (

Valve Stroke
\ —ko(x — Lg), x> Lg, Length

30 year BEST lab reunion, 8/8/2015



Physics-based Modeling: Flows

* Gas flows determined by choked/non-choked orifice flow equations:
fi(t) = fg(pt(t)vut(t))
fo(t) = fo(0o(), up(?))

( v 2 (’7+1>/(’Y*1) 1 ’y/('y—l)
CAp\| 73T <7+ 1) PLzpAni/ee 2 (07)
q
2/ (v+1) /v
2 Y P2 P2 +1\Y/(v=1)
SAS — -\ ’ > 5=
C p1J ZR,T (W—1> ((pl) (p1> ) pl_p2/\p1/p2<( 5 )
fg(plapQ) = 9 N 9 (v+1)/(v—1) /(=)
Coldsp2\| 757 <v+ 1) PL<p2Ape/m 2 ()
q
2/y (v+1) /v
2 v D1 D1 +1\7/(v—1)
SAS - I ’ A =
C .pQJ ZR,T (7_1> ((p2) (p2> ) p1<p2 Apa/p1 < (37)

* Fluid flow determined by orifice flow equation:

_a)
Ful) = 5

CI)A”L)\/% |pfl - pf7|81gn(pfl — pfr)
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Pneumatic Valve Modeling

* Possible sensors include .
- x(t) 7 Valve position Z
p(t) Gas pressure (top)
y(t) = pu(t) Gas pressure (bottom)
f'v (t) Fluid flow
open(t) Open indicator
closed(t) ] Closed Indicator

where,

(1, ifa(t) > L,
open(t) = {O, otherwise

(L ifz(t) <0 :
closed(t) = {O, otherwise g

Valve Position Valve Flow
0.1 0.4}
203}
g
0.05 — 0.2}
z
=
o 0.1
0 0 »
0 10 20 30 0 10 20 30
Time (s) Time (s)
Top Gas Pressure Bottom Gas Pressure
6 6
< <
a a
2 2
L =
Z 2
s s
=9 a
0 0 :
0 10 20 30 0 10 20 30
Time (s) Time (s)
Open Indicator Closed Indicator
1 1
Q
=
045 ............. E 0.5 ................
>
0 : Of- ;
0 10 20 30 0 10 20 30
Time (s) Time (s)
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Modeling Damage

"""" Input Reference +oo Input Reference «+++o++ Input Reference «++++++ Input Reference
= = =Nominal Friction = = =Nominal Spring = = =No Internal Leak = = =No External Leaks
''''' Increased Friction =+=1Damaged Spring +=+=Small Internal Leak == Small Top External Leak
— Friction at = Spring at k' Internal Leak at A: Top External Leak at A:t
0.1 0.1 0 L fmmm 01t
z 0.08 z 0.08 2 0.08 2 0.08
= 0.06 = 0.06 = 0.06 = 0.06
ot o= [©] =}
= 0.04 = 0.04 = 0.04 = 004
o o 8 g
*~0.02 &= 0.02 & 0.02 &~ 0.02
0 0 ST 0 0
0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30
Time (s) Time (s) Time (s) Time (s)
Degradation of spring Growth of internal leak Growth of external leak
* Based on sliding wear e Assume form similar to * Based on sliding wear * Based on environmental
equation sliding wear equation equation factors such as corrosion
e Describes how friction e Describes how spring * Describes how leak size * Assume a linear change
coefficient changes as constant changes as changes as function of in absence of known
function of friction force, function of spring force, friction force, piston model
piston velocity, and wear piston velocity, and wear velocity, and wear
coefficient coefficient coefficient
#(t) = wol Fr(u(t)] e(t) = —we | Fu(to(d)] Ail) = wil Fy(u®)]  Act) = w.

30 year BEST lab reunion, 8/8/2015



Damage Progression

x 10° Damage Progression of Friction Coefficient x 10 Damage Progression of Spring Constant
10
F 5 3 4
x 10 / x 10
35 | I .
- 7| @) = we [ Fr(Hu(@)]] o AN -
E 3 _/‘/ ~ \ 6.9
3 / E 4 N 688l =\ ]
Z 25 / 2 6.86 —
3 1.05 / = \ 6.84
g 2 40 41 % 7 40 41
g pd g
© 15 o
c c 6
=} / = N
CR p & \
'8 os J’/ . -
. /‘ -
0 k(t) = —we|Fs(t)o(t)]
0 20 40 60 80 100 0 20 40 60 80 100
Time (cycles) Time (cycles)
x 10  Damage Progression of Internal Leak ; x 10°° Damage Progression of Top External Leak
2 3
Ai(t) = wi|Fy (t)v(t)
2.5
« /
— 15 e e /
£ / g 2
8 < v
i 9 § 1.5 /
B 10 - /
= g
[ 7 s /
S x
E - // 6o __/J | a /
(e]
1 0.5 /
os. ) Ac(t) )
= W
0 / 49 dll : : 0
0 20 40 60 80 100 0 20 40 60 80 100
Time (cycles) Time (cycles)
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Damage Estimation

 Wear parameters are unknown, and must be estimated
along with system state

Augment system
state with unknown
parameters and use

state observer

<

=

;>?v~3 S

-~ A~ N
~ Tk /S O
— N S T

o

SHS

®

EEE

NN O

= =
S S
o o

®

®

VS

<
v

NN O

e N
— —

S~ T

S~ S

S—

S—

SN—

Position

Velocity

Gas mass above piston

Gas mass below piston
Friction coefficient

Spring rate

Internal leak area

External leak area (top)
External leak area (bottom)

Friction wear

Spring wear

Internal leak wear

External leak wear (top)
External leak wear (bottom)
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Particle Filters

 Employ particle filters for
joint state-parameter
estimation

— Represent probability
distributions using set of
weighted samples

— Help manage uncertainty
(e.g., sensor noise,
process noise, etc.)

— Similar approaches have
been applied successfully
to actuators, batteries,
and other prognostics
applications

\ State represented with

discrete probability
distribution

Distribution
evolves in time

30 year BEST lab reunion, 8/8/2015



Damage Estimation with Particle
Filters

* Particle filters (PFs) are state observers that can be applied to general
nonlinear processes with non-Gaussian noise

— Approximate state distribution by set of discrete weighted samples:
{4 0)), Wi HL
— Suboptimal, but approach optimality as N> oo
 Parameter evolution described by random walk:
Or = Or—1 + k-1

— Selection of variance of random walk noise is important

— Variance must be large enough to ensure convergence, but small enough
to ensure precise tracking

* PF approximates posterior as

N
p(xk, Orlyor) = Z wi0(xi o) (dx1.d0)
=1

30 year BEST lab reunion, 8/8/2015



Sampling Importance Resampling

* Begin with initial particle population
* Predict evolution of particles one step ahead
 Compute particle weights based on likelihood of given observations

 Resample to avoid degeneracy issues

— Degeneracy is when small number of particles have high weight and the rest have very low
weight
— Avoid wasting computation on particles that do not contribute to the approximation

A

1ls

InitiBbd
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Prediction

e Particle filter computes

N
P(Xips Orplyors) = ) w2p5<x;P,ezp)(kapd9kp)
=1
 Prediction n steps ahead approximated as
N

p(ka+na 0k¢p+n|y0:kp) ~ Z wz’p 6(Xip+naeip+n) (dxkp+nd9kp+n>
1=1
e Similarly, EOL prediction approximated as

N
P(EOLp|youkp) & Zw;cp%omkp (AEOLy,)
. =1
e @General idea

— Propagate each particle forward until EOL reached (condition on EOL
evaluates to true)

— Use particle weights for EOL weights

30 year BEST lab reunion, 8/8/2015



It’ll Break at this Time:

* Friction progression EOL prediction

0.12
0.1+

" 0.08
0.06
0.04
0.02

EOL Probability Mass Function

Probability

Damage Threshold

w
n
|

(9%}
1

]
N
1

24 Predicted Trajectories

Friction Coefficient (Ns/m)

T T T T T T T

50 60 70 80 90 100 110 120 130 140
Time (cycles)
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Area (mz)

gS5s+—r+——
8.45 1
8.4 1
8.35 — — = Actual
Estimated
8.3 T . T : :
1500 1505 1510 1515 1520 1525 1530
Time (s)
, x 10 1.1 . IWear IParamleter Esltimatclr . .
z ‘
g
=
2
Q
=
(]
S
@}
=
9]
=
0 T T T T T T T T T
0 300 600 900 1200 1500 1800 2100 2400 2700 3000

Estimate of wear parameter converges
after a few cycles, after this, leak area can

Validation of Methodology

X 10‘7 Effective Internal Leak Orifice Area Estimate

Time (s)

be tracked well.

Probability

0.5

0.4 1

o
(98]
1

o
o
I

0.1+

Estimate at 100 Cycles

Estimate at 90 Cycles
.~ Estimate at 80 Cycles
" Estimate at 70 Cycles
I Estimate at 60 Cycles
B Estimate at 50 Cycles
B Estimate at 40 Cycles
B Estimate at 30 Cycles
I Estimate at 20 Cycles
B Estimate at 10 Cycles
= = =True EOL

_.-'/_':‘,!/
80 90 100
Time (cycles)

EOL predictions all contain true EOL, and
get more accurate and precise as EOL is

approached.

Predictions

Internal
Leak EOL

p""";_":\—-m:h
|

110

120
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o-A Performance

Plot summarizes
performance of
internal leak prognosis

Over 50% of
probability mass
concentrated within
the bounds at all
prediction points
except at 20 and 30
cycles

— Mean RULs are

within the bounds at
these points

For a=0.122, metricis
satisfied at all points

RUL (cycles)

a=0.1, [3=O.5

RUL
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@’ Some Current and Past Activities in ISHM

ROCKET ENGINE
TEST STAND

LCROSS IVHM

Ground-Based Root Cause On-board and off-board
Determination; Data Analysis Diagnostics, Prognostics,
Logistics

Space Station
Fault Analysis

Space Shuttle Main
Engine Abnormal
Condition Detection

-

CLV Crew Abort Logic
Development Solid Rocket Motor &
Ground Diagnostics for CLV Failure Detection

Composites
Shroud

and Ground Test / and Prediction .
Integration Infrastructure Data Analysis / Mining for
Mission Ops
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S&T Challenge

Learning and Adaptation

« Our knowledge of the space environment decreases
drastically as we explore beyond the earth’s
atmosphere

— Practical limits to how much “a priori” knowledge can be stored
on board

« Beyond earth orbit, autonomy is a critical enabler for
exploration (with or without a crew)

« Science return from robotic spacecraft can be
significantly increased if these spacecraft can learn from
their environment and adapt

— Serendipitous science

— Novelty detection

— Automated discovery

— Accurate response to unforeseen failures
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S&T Challenge

Software Complexity
Source Lines of Code in NASA Robotic Spacecraft

B %

1960 1964 1970 1975 1982 1990 2000

600
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400

300+
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100+

B KSLOC

Voyager Galileo Cassini MPF MER

« Traditional flight software certification requires exhaustive testing:
— Of all nominal execution traces (all possible branches) of the software
— In response to all input commands and allowable sensor values

Of known failure modes

« Simply not possible for health management systems of reasonable
complexity

More R&D needed in automated verification and validation

Need methods and tools to V&V adaptive systems

Model-based software development (autocoding) to reduce cost of development

and testing

Flight certification methods need to accommodate the unique needs of health

management systems.
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S&T Challenge

Decision Making

* PHM information is only a means to an end

 Integrate Diagnostic and Prognostic
information with
— Logistics
— Fleet management/mission management
objectives
— Operations

e Path forward

— Automated reconfiguration

— Decision process is multi-objective dynamic
optimization
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S&T Challenge

Uncertainty Management
« Quantification of uncertainty is a
key in being able to realize value
of remaining life estimates

« Methods to quantify and manage
uncertainty lacking A

« Standardized metrics to express |rreEe
uncertainty in PHM context
lacking

Updated prediction at P3

Damage

updated predicti

»

Time/Cycles

P1 P2 P3
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Closing Thoughts

* Integrated System Health Management is a systematic engineering discipline
where health management principles are applied to systems
— Seen more and more as an enabler for aerospace applications
— Prognostics is a relatively new technology that promises to predict time-to-failure

e Ongoing activities at NASA cover range of ISHM areas
* Challenges in S&T

— Learning and adaptive systems
* Space is the “final frontier” for ISHM

— Software complexity
* V&V, certification
— Uncertainty Management
* Credible methods to manage uncertainty

— Decision Making
* Tie-in to logistics; reconfiguration
* Implementation will be one step at a time
— Finding the right applications is crucial
— Ground -> Aircraft -> Robotic craft -> Human space flight
— Increasing level of comfort and confidence over time
— Proving benefit over cost
— Taming software complexity
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