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Solar Energy Potential ) B,

e Total Solar Constant (Earth) 1370 W/m?
e Earth Albedo (Ability to Reflect Light): Q =0.37

e Thus, for the whole Earth, with a cross section of 127,400,000 km?, the power is
1.74x10Y7W, +3.5%

* 6 Boxes at 2.5 TWe each (2008 Worldwide Energy Consumption of 1.50x1013W —
”Consumption by Fuel Statistical Review of World Energy” 2009, Energy Information Agency (EIA)

e Solar concentration to scale boxes
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Issues of the PV Balance of Systems (BOS) @&
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PV Reliability & Solar Thermal Gain  @g

Laboratories

= Thermal gain from solar radiation in an object, space
or structure, which increases with the strength of the
sun, and with the ability of any intervening material to | B}
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Laboratory testing provides vital information

for PV system reliability
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Accelerated Testing / Lab Tests

I.,ogl o Resistance

Accelerated Aging of Tape
Joint — Thermal Cycling

Relative Power (P/Pinitial)
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System performance model must include
wear out (end of life) information
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IGBT/(Diode) load terminals N°USing
PCB

control terminals

wie bond

ceramics

epoxy filler soft gel (silicone gel)

baseplate (Cu, AISIC)
Construction of an IGBT module
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DC-DC Plasma Arc-Fault Research

= Customized PV Simulator provided power to a
developed Arc-Fault Generator.
= A power resistor was employed to avoid shorting

= Dev.of NEC690.11 & UL 16998B to define
maximum AFCI trip times and safegaurds.

= Spectral Analysis to guard against nuisance
tripping.
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Arc Power [W]

. . . =) Sandia
Arc Duration Trip Time ()
Parametric transient temperatures determined for the (bulk) median radial

temperature through the sheath.

As the arc power increases there is less time before the polymer reaches the
ignition temperature.

Results suggest increasing arc-power levels can have impacts on ignition time
scales, which requires rapid and accurate AFCl responses.

UL 1699B defines the maximum AFCI trip time according to: tey = min(2,——)

larcVare

Arc Duration Time [sec.]
0.20 0.40 0.63 0.83 1.15 1.50 2.00 4.00 6.00 8.00 10.00

100 25.79 27.03 33.06 41.94 61.23 86.90 128.03 297.40 @ 42527 499.96 538.53
300 25.91 28.87 40.87 58.66 98.42 153.16 | 242.46 = 556.19 694.35 743.50 760.65
500 26.05 30.78 49.15 76.87 140.46 | 229.68 372.76 = 754.14 861.42 890.81 898.93
650 26.13 32.00 54.49 88.81 168.60 280.93 = 45590 846.23 936.74 958.79 964.23
900 26.27 33.99 63.38 108.97 216.57 367.08 584.86 961.27 1031.54 1046.20 1049.29
1200 26.44 36.37 | 74.23 133.93  276.20 470.04 719.73 1062.64 1116.78 1126.49 1128.25

Material Under Non-Destructive State —— UL 1699B AFCI Maximum Trip Time

Material Undergoing Melting Tpee = 155°C

Material Undergoing Fire Ignition Tignition = 450°C



SimElectronics Model ) e,
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Solar Cell (Simscape thermal model) Scope

This block models a solar cell as a parallel combination of a current source, two exponential diodes and a parallel IGBT Turn-on Switching Energy (Vcc= 1800 V)

resistor, Rp, that are connected in series with a resistance Rs. The output current Iis given by

1500 T T
25 deg. C
125 deg. C

1= Iph - Is*(e~((V+T*Rs)/(N*VE))-1) - 1s2*(e((V+I*Rs)/(N2*Vt))-1) - (V+I*Rs)/Rp

1000

where Is and Is2 are the diode saturation currents, Vt is the thermal voltage, N and N2 are the quality factors (diode
emission i and Iph is the solar-g d current.

Models of reduced complexity can be specified in the mask. The quality factor varies for amorphous cells, and typically
has a value in the range of 1 to 2. The physical signal input Ir is the irradiance (light intensity) in W/m~2 falling on the
cell. The solar-generated current Iph is given by Ir*(Iph0/Ir0) where Iph0 is the measured solar-generated current for
irradiance Ir0.

Settings
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Parameterize by: lBy i circuit 8 i ]
Diode saturation current, Is: 3.15e-07 A v
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0 50 100 150 200 250 300 350 400 450 500
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measurements, H IGBT On-state Characteristics
" 500 T

lrra'dlance used for measurements, 1000 W/m~2 .

H 400
Quality factor, N: 14 . 300

<

Quality factor, N2: 2 £ 200
Series resistance, Rs: 0.0042 Ohm v 100
Parallel resistance, Rp: 10.1 Ohm - 0




Power Electronics ) i
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= Greater Number of Layers Increases R,, with VNS
Standard Configurations Capable of Thermal
Dissipation Densities Up to 250-300 W/cm?

= pPower Cycling Degradation Impacts
= Material Degradation and Micro-Fracturing Cold Plate
= CTE Mismatch € e
Impacts
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Heat Exchanger Cooling Plate ) &=

= Current Work Evaluating Heat Transfer Capability
of Binary Mixture Working Fluids to Improve Heat
Exchanger Performance
= Propylene-Glycol (PPG)/Water
= Ethanol/Water

= Pure Components

= Alternative Adhesives Durability/ Performance
Evaluation
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Rifled Tubing vs. Smooth Tubing ) B,

= To improve the heat transfer rate from the heated wall to the flowing bulk
fluid, rifled tubing designs have demonstrated increased turbulence.

= S.M. Bajorek and J. Schnelle (2002):

= The increased internal surface area was found to improve the heat transfer
coefficient as the convection effective area (Nu number) was greater than that
of a smooth tube.

= For an PPG/water, x,=0.3 concentration an approximate 39% heat transfer
coefficient improvement was observed using the Turbo Bill over a smooth pipe
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Figure 6.2-Heat transfer coefficient vs. superheat bolling curves for Pyl glycol Figure 7.4-Boiling curve pari b h and Turbo BIll tubes in X.=0.773, X,;=0.227 at
at saturation at 1.0 bar on the Turbo Blll tube. saturation at 1.0 bar.
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AC Module

= One PV module connected to a dc—ac inverter

= Very low voltage

= New converter concepts

= New advanced design concepts

"= |mproved performance and reliability.




AC Module

PV
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AC

sAC module inverters are small interactive inverters that are supplied

by a single PV module.
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Fielded Studies Validation )
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The Solar Future )

= Very Efficient PV Cells
= Roofing PV Systems

= PV Modules in High Building Structures
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Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia
Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of
Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.
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Photons Affinities for Materials ) i,
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= CPV solar cells are characterized by spectral sensitivities that trigger responses to natural

changes in incident spectrum, which impacts cell performance as a fxn. of atmospheric
conditions.

= Spectral effects result from differences between the actual (dynamically variable) solar
spectrum incident on a solar cell in the field and the standard (fixed) solar spectrum used for
rating purposes [Armijo, 2012].
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