
IROS 2017

Inclined Surface 
Locomotion Strategies 
for Spherical 
Tensegrity Robots
Lee-Huang Chen, Brian Cera, Edward L. Zhu, Riley Edmunds, Franklin 
Rice, Antonia Bronars, Ellande Tang, Saunon R. Malekshahi, Osvaldo 
Romero, Adrian K. Agogino, and Alice M. Agogino



IROS 2017

Background - Tensegrity
• Tensegrity structures are 

comprised of rigid bodies 
held in equilibrium within a 
network of tensile elements

• Local forces are distributed 
globally to the entire 
structure

• These structures are 
inherently compliant and 
lightweight
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Motivation
• We investigate the potential of tensegrity robots as 

planetary surface explorers
• Compliant nature of the robot means that the structure 

can protect a scientific payload that is centrally located
• Needs to be able to traverse unknown and potentially 

hazardous environments
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Related Work
• Tensegrity Locomotion 

Control
– Bohm et al., ‘15
– Zhang et al., ’16

• Robotic Incline/Hopping 
Locomotion
– Hockman et al., ‘16
– Agogino et al., ‘15

Zhang et al., ‘15

Hockman et al., ‘15
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Research Goal
Demonstrate, through both hardware and 

simulation, the capability of spherical 
tensegrities to perform uphill inclined 

climbing
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Single-Cable Baseline
• Single-cable actuation policy is used a 

baseline for uphill climbing performance

TT-4mini performing single-cable actuation. Source: L. H. Chen et al., 
“Modular Elastic Lattice Platform for Rapid Prototyping of 
Tensegrity Robots”

• Central Microcontroller
• 6 Brushed DC motors
• Silicon Rubber Elastomer
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Single-Cable Baseline
• Simple single-cable 

actuation is 
simulated using the 
NASA Tensegrity 
Robotics Toolkit 
(NTRT)

• Model parameters of 
the TT-4mini were 
matched in 
simulation
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Two-Cable Actuation Policies
• Utilized NTRT to 

rapidly test 
different 
combinations of 
two-cable policies

• In simulation, 
found two different 
actuation schemes 
that performed 
well on very steep 
inclines

Simultaneous Actuation Alternating Actuation
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Hardware Experiments Results
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Hardware Experiments Results

Single-Cable 
Actuation

Two-Cable 
Simultaneous 
Actuation

Two-Cable 
Alternating 
Actuation

• Simultaneous Actuation policy 
demonstrates major 
improvement in speed
– Simultaneous Actuation 

achieved up to 6.32 cm/s

• Mars Curiosity Rover travels at 
approximately 5 cm/s
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Discussion - Center of Gravity

• Two-cable policies both had consistently lower center of gravity
• As expected, lower center of gravity results in greater stability

Center of Gravity
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Discussion - Stance
• Larger supporting base polygon
• Center of gravity is 51.4% closer to uphill edge with multi-cable 

policy versus single-cable policy
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Summary
• Demonstrated uphill locomotion with spherical 

tensegrity
– Steepest incline demonstrated in hardware

• Showed simple single-cable actuation can climb 
up 13 degrees

• Major improvement in performance 
demonstrated by two-cable actuation policies
– Lower center of gravity and more stable stance
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Future Work
• Multi-cable actuation policies (i.e. all 24 cables actuated 

simultaneously) seem promising for further improving 
locomotive capabilities
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