

Design and Fabrication Methodology for Customizable, Multi-Material Prosthetic Hands for Children

Daniel Lim, Adam Hutz,
Euiyoung Kim, and Alice M. Agogino,
Department of Mechanical
Engineering
University of California, Berkeley

1

3D Printing in the Medical Field

Custom-printed hearing aids via the SLA process (image courtesy of EnvisonTec).

A dental tool guide (image courtesy of Formlabs).

3D printed prosthetic hand (image courtesy of Enabling The Future, Cyborg Beast).

Sophie's Super Hand

Challenges in Current Prosthetic Hand Designs

	Cyborg Beast	Raptor Reloaded	Hackerberry-Exiii
Total 3D printed parts	25	19	44
Assembly steps	24	32	66
Harness type	Solid harness with padding (Not customized)	Elastomer wrap (Partially Customized)	Solid harness with padding (Not customized)
Types of Prosthetic	Body-powered	Body-powered	Myoelectric Prosthetic 4

Symbrachydactyly User groups

Multi-material Additive Manufacturing

Multi-material Additive Manufacturing for prosthetics

Multi-material Additive Manufacturing for prosthetics

- + Reduced number of parts (Single print)
- + Simpler assembly
- + Soft & Custom harness

Solution Strategy

Modular Product
Platform,
Case-based
Reasoning

Modular Prosthetic Finger Design

UCSF & Benioff Children's Hospital: Camp Winning Hands Empowers Children

<u>Camp Winning Hands</u> is an overnight camping experience for children with congenital hand and upper limb differences, and provides an opportunity for play and exploring in a safe environment.

Daniel Lim, Mechanical Engineering, UC Berkeley, <u>limdan7@berkeley.edu</u>

Grace O'Connell, Mechanical Engineering, Assistant Professor, UC Berkeley Biomaterials, biomechanics

control

Sanjay Joshi, Mechanical Engineering, Professor, UC Davis
Robotics, electromyography (EMG) sensing &

References

- [1] Daniel McGlynn, 2015, "Sophie's super hand", Berkeley Engineer, Fall 2015: http://engineering.berkeley.edu/magazine/fall-2015/sophies-super-hand.
- [2] Zuniga, Jorge, et al. "Cyborg beast: a low-cost 3d-printed prosthetic hand for children with upper-limb differences." BMC research notes 8.1 (2015): 10.
- [3]Bartlett, Nicholas W., et al. "A 3D-printed, functionally graded soft robot powered by combustion." *Science* 349.6244 (2015): 161-165.
- [4] Biddiss, Elaine A., and Tom T. Chau. "Upper limb prosthesis use and abandonment: a survey of the last 25 years." Prosthetics and orthotics international 31.3 (2007): 236-257.
- [5] Banks J. Adding value in additive manufacturing: Researchers in the United Kingdom and Europe look to 3D printing for customization. IEEE Pulse 2013;4(6):22–26.