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Abstract

Studies show that if all the lighting systems in buildings of California were retrofitted with
dimming ballasts, then it would be possible to obtain 450 MW of regulation, 2.5 GW of non-
spinning reserve and 380 MW of contingency reserve. However, in order to guarantee
participation it will be important to monitor and model lighting demand and supply in
buildings. Prior work by the PI has shown that wireless sensor networks have the potential to
reduce energy use at 50-70%, but they can be expensive due to a dependence on dense sensing.
This report presents a sensor-based intelligent lighting system for future grid-integrated
buildings. Approximately 60% fewer sensors are deployed compared to state-of-art systems.
Sensor modules contain small solar panels that supply power by ambient light. Reduction in
sensor deployments is achieved using piecewise linear predictive models of indoor light,
discretized by clustering for sky conditions and sun positions. With two weeks of training data
from the Sustainability Base at NASA Ames, light levels were predicted with 80-95% accuracy.
Day-ahead daylight is predicted from forecasts of temperature, humidity and cloud cover with
92% accuracy. Load shedding and load shifting demand response strategies predicted potential
load reduction by 80% and 19%, respectively. An environmental return on investment is
estimated to occur after the system has supplemented 148 kWh of grid energy, which can be
accomplished in two days with a 70% reduction potential.

Key Words: wireless sensor network, daylight harvesting, inverse model, clustering, support
vector regression, solar powered, demand response, life cycle assessment
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Executive Summary
Introduction

Prior studies have found that closed loop control of building systems enabled by
wireless sensor and actuator networks (WSANSs) can result in 28% cooling energy and 40% light
energy savings in office buildings. Commercial lighting contributes to 14% of commercial
energy use. The researchers’ prior work has demonstrated that even without daylight
harvesting (controlling artificial lights based on daylight availability), 50% of lighting energy
can be saved from personalized control of wireless individually- dimmable luminaires, and an
additional 20% of energy savings could be achieved with daylight harvesting.

In spite of the great potential for increased energy conservation, the actual adoption of
intelligent lighting control systems in commercial buildings has been very limited. As of 2010,
seventy percent of the US national stock of commercial buildings had no lighting controls for
energy efficiency, partially due to the high costs of commissioning (installing, customizing and
testing). Further, it has been estimated that fifty percent of installed intelligent lighting control
systems have been deactivated by the users and the remaining operate well below target
performance due to usability problems. These deficiencies have resulted in missed
opportunities for energy savings, motivating our proof-of-concept feasibility study of a rapid low
cost performance-oriented lighting commissioning system using a reusable plug-and-play wireless
sensor network (WSN) platform, data processing and modeling software.

Project Objectives

1. Self-Power and Low Maintenance: Design and implement tests for energy performance
assessment of solar/light-powered sensor platforms. The goal was to achieve continuous
data acquisition and light energy harvesting for at least three months without battery
replacement.

2. Expedite Installation: Plan and deploy real-time data acquisition with solar/light-
powered sensor platforms with inverse model algorithms at two operating test beds.
Record time for installing data acquisition drivers at different test beds. The goal was to
demonstrate easy set-up of the plug-and-play sensor system by reducing new
installation and deployment time to less than 30 minutes.

3. Maximize Accuracy of Virtual Sensors: Complete inverse indoor light model using test
data from the wireless sensor platform. Evaluate time required for consistent model
performance. Implement initial optimal sensor placement. The goal was to achieve
average accuracy of 90% in instantaneous indoor light prediction (including
disaggregation of daylight and artificial light) with less than one month of sensor data.

4. Minimize Number of Physical Sensors: Develop a daylight prediction model for each
window in the test beds. Prediction accuracy should be high enough to minimize the
number of sensors required. The goal was to achieve over 90% accuracy of instantaneous
indoor light prediction with 50% fewer sensors than current commercial systems (0.15
sensors/ m?to 0.075 sensors/ m?) .
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5. Implement Demand Response: Perform energy simulations for different demand
response strategies at lighting levels with load shedding at 80% accuracy.

6. Determine Energy and Environmental Benefits: Perform lifecycle cost and energy
analysis of the retrofit system and user evaluations.

Project Outcomes

Most of the objectives were achieved or exceeded.

1. Self-Power and Low Maintenance: Achieved continuous data acquisition and light
energy harvesting for the solar/light-powered sensor platforms for six months without
battery replacement. It is estimated that the platform can be self-powered for over a
year.

2. Expedite Installation: Tested the set-up of the plug-and-play sensor system in three test
beds and reduced installation and deployment time to less than 30 minutes.

3. Maximize Accuracy of Virtual Sensors: Achieved average accuracy of instantaneous
indoor light prediction (including disaggregation of daylight and artificial light) to 80-
95% with two weeks of sensor data. This accuracy is well within the human tolerance
range of ~50%.

4. Minimize Number of Physical Sensors: Achieved 80-95% accuracy using 60% fewer
sensors than the state-of-art intelligent lighting system. The temporal distribution of
error is within 10% for most of the workstations in the test beds.

5. Implement Demand Response: Developed a support vector regression model that was
able to predict the day-ahead daylight availability to 92% accuracy. Load shedding and
load shifting demand response strategies predicted potential load reduction from 19-
80%.

6. Determine Energy and Environmental Benefits: The system recovers its embedded
energy after displacing 148 kWh of US grid energy and provides substantial
environmental benefits. With the system reducing lighting demand by 70%, it can
achieve an environmental return on investment after only two days of use and can
effectively save an estimated 23,000 kg of CO: equivalent in emissions over one year
(based on a single functional unit of one office space, 500 sq. meters).

Conclusions

A sensor-based intelligent lighting system for future grid-integrated buildings was
developed, implemented and tested in several test beds: Center for Information Technology in
the Interest of Society and the Berkeley Energy and Sustainable Technologies Lab at UC
Berkeley and at the NASA Ames Sustainability Base. With two weeks of training data from the
Sustainability Base at NASA Ames, light levels were predicted within 80-95% accuracy. By
using piecewise linear predictive models of indoor light, discretized by clustering for sky
conditions and sun positions, the system was able to achieve this accuracy while using 60%
fewer sensors compared to state-of-art commercial systems. The sensor modules were designed
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with small solar panels in order to supply power by ambient light. Based on the testing to date,
the platform is predicted to be self-energized for over a year of operation.

The estimated energy savings and associated environmental benefits were validated
through the research and proof-of-concept testing. Accurate day-ahead predictions could be
used to apply load shedding and shifting demand response strategies.

Recommendations

The successful proof-of-concept development and testing motivates moving to the next
step for commercialization. The MEMSIC TelosB mote was used as the wireless sensor platform.
Although the TelosB platform used in this study was useful for research testing, it would too
expensive ($120 each) and unnecessarily complicated for a commercial platform. The next step
would be to develop specifications for a simplified platform using off-the-shelf components and
a dedicated printed circuit board. The estimated costs could be reduced to $10 each. In addition,
the dedicated hardware and software design could be extensible to other sensing modalities
and generic data driven modeling for smart building energy management.

Another opportunity is to leverage recent low cost technological advances in internet-
accessible LED lights. For example, General Electric has recently announced a series of LED
lights that can be controlled through the internet or a smartphone. Smartphones also have light
sensors that could be used for the originally commissioning, reducing sensor costs even further.

The target market of the proposed plug-and-play smart lighting commissioning and
retrofit comprise 70% of U.S. national stock of commercial buildings, including the new and
existing buildings, that do not have intelligent lighting and 50% of the commercial buildings
with sub-optimally performing intelligent lighting control systems. Further, new smart meters
for residential buildings opens up the residential market as well.

Public Benefits to California

The estimated energy savings is 6,000 GWh per year in California, assuming a 10%
market share for the smart lighting system. An environmental return on investment is estimated
to occur after the system has supplemented 148 kWh of grid energy. This can be accomplished
in two days for single functional unit of one office space (500 sq. meters) and eliminate 23,000
kg-COr-eq in emissions over the course of one year when lighting consumption is reduced by
70% from standard. Cost savings will be achieved from reduced installation costs and extended
energy bill savings. Moreover, because this plug-and-play system utilizes a predictive inverse
model for control, it drastically minimizes commissioning time, which can take months for
existing lighting retrofit solutions with no guarantee that the results work after occupancy or
room changes.
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Introduction

IBM’s Instrumenting the Planet report [1] highlights the importance of wireless sensor-
actuator networks and distributed analytics in the life cycle management of natural resources
and technical infrastructures in agriculture, hydrological systems, land use, power grids,
transportation systems, manufacturing and many more applications. Researchers introduce
Real-World-Aware (RWA) systems, which extract information about the state of the real world
from raw data aggregated from disparate sources and use it to complete the loop through
automated and adaptive control. Cyber-physical systems are becoming pervasive in large
infrastructures and are viewed as essential components of grid-connected buildings. Expert
studies [2] show that if all the lighting systems in the buildings of California are retrofitted with
dimming ballasts, then it would be possible to obtain 450 MW of regulation, 2.5 GW of non-
spinning reserve and 380 MW of contingency reserve from participation of lighting loads in the
energy market. In some cities, such as Amsterdam, dimmable street LED’s are integrated within
their smart grid [3]. Ceriotti et al. (2011) proposed wireless-enabled closed loop control for
lighting in road tunnels [4]. The advantage of controlling lighting loads is that they can be
controlled to any intensity with dimming ballasts, unlike HVAC systems. Furthermore, low
latency, makes the dimmable lights competitive with generators, which have over one minute
response time.

Wen et al. (2011) found that closed loop control of building systems enabled by wireless
sensor and actuator networks (WSAN’s) result in 28% cooling energy and 40% light energy
savings in office buildings [5]. Commercial lighting contributes to one of the largest pieces of
the commercial energy pie. Intelligent lighting forms an easy and low-cost avenue to energy
conservation. According to the U.S. DOE Energy yearbook in 2010 the maximum electricity
consumption in commercial buildings (13.6%) is attributed to lighting [6]. The researchers” prior
work has demonstrated that even without daylight harvesting (controlling artificial lights based
on daylight availability), 50% of lighting energy can be saved from personalized control of
wireless-enabled individually- dimmable luminaires, and an additional 20% of energy savings
could be achieved with daylight harvesting according to simulation results [7-9]. Furthermore,
there have been considerable improvements in lighting and shading controls [10] and in
daylight harvesting systems [11, 12]. Singhvi et al. (2005) developed a centralized lighting
system to increase user comfort and reduce energy costs by using a WSN [13]. Lin et al. (2005)
proposed a decentralized algorithm for WSAN-enabled optimal lighting control [14].

In spite of the growing impetus in lighting control research and some successful pilot
projects, the actual adoption of intelligent lighting control systems in commercial buildings has
been very limited. As of 2010, 70% of the US national stock of commercial buildings had no
lighting controls for energy efficiency [15]. Some of the reasons include general lack of
encouraging energy savings from expensive commissioning of lighting systems, particularly
when usability was not considered appropriately. Rude (2006) found that 50% of the intelligent
lighting control systems they studied had been deactivated by the users and the remaining 50%
operated at 50% of target performance [16]. System usability problems include lack of
interoperability between lighting, shading and building automation system drivers, software
and database.
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Because of dimmable ballasts and the low latency associated with controlling lighting
loads, lighting is a prime target for implementing demand response (DR) policies. DR programs
aim to lower electricity consumption when market prices are high or when grid reliability is
jeopardized by means of incentive payments [17]. DR days are typically announced with one
day notice, which leads to day-ahead prediction being necessary for long term DR [18]. Main
processes that are often targeted for short notice load reduction include heat, ventilation and air
conditioning (HVAC), lighting, and electronic equipment [19]. In the commercial sector, HVAC
typically represents the largest potential for load reduction [19,20], but lighting load is also
significant [20]. The possible DR methodologies inherently differ between HVAC and lighting,
and the low latency and continuous dimming of lighting provides an avenue for rapid load
reduction.

Project Objectives

The goal of this project is to develop and test “proof of concept” of a wireless sensing-enabled
rapid indoor lighting commissioning and retrofitting system for energy efficiency and emerging
demand response.

Project objectives were to:

* Self-Power and Low Maintenance: Achieve continuous data acquisition and light

energy harvesting for at least three months without battery replacement.
Achievement of continuous data acquisition at several lighting scenarios is needed
to verify “proof of concept”. Light energy harvesting for 3 months without battery
replacement minimizes power consumption and maintenance. With energy
efficiency in lighting as a focus, it is appropriate that the system self-power by light
energy.

* Expedite Installation: Demonstrate easy set-up of the plug-and-play sensor system by
reducing new installation and deployment time to less than 30 minutes.

A reduced installation and deployment time will make the system convenient and
suitable for indoor lighting commissioning.

* Maximize Accuracy of Virtual Sensors: Achieve average accuracy of 90% in
instantaneous indoor light prediction (including disaggregation of daylight and
artificial light) with less than one month of sensor data.

An average accuracy of 90% maintains that the predictive model light with
sufficient accuracy for daily energy efficiency and demand management, while
remaining outside the tolerance range for human detection of light changes. The
IESNA Lighting Handbook uses 20% as the lowest detectable change. The
Commission Internationale de I’Eclairage (CIE), 1986 uses the 50% standard, which
is based on the research results of Luckiesh and Moss in The Science of Seeing, 1937
(results Prof. Agogino has validated in her own research). This number was also
adopted in Europe through EN 12464-1:2002. By setting a one month maximum to
train data, the aim is to create a system that can be rapidly functional.
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* Minimize Number of Physical Sensors: Achieve over 90% accuracy of instantaneous
indoor light prediction with 50% fewer sensors than current commercial systems (0.15
sensors/ m? to 0.075 sensors/ m?).

Achievement of high accuracy light prediction with 50% fewer sensors reduces the
system cost without compromising quality. It allows the intelligent lighting system
to be more available to a wider target market.

* Implement Demand Response: Predict day ahead lighting needs at 80% accuracy.
Prediction of day-ahead lighting needs at 80% accuracy allows for demand response
policies that don’t compromise users’ visual comfort, since 80% is within the
tolerance for human detection of light levels, as indicated in Objective 3 above.

* Determine Energy and Environmental Benefits: Estimate energy savings of 6,000

GWh per year in California with an assumed 10% market share.
Estimation of 6,000 GWh per year in energy savings demonstrates the financial and
environmental benefit of the intelligent lighting system. By considering the impact
of the system through its lifecycle, the full impact benefit can be understood.

Project Approach
Intelligent Lighting System Overall Design

Figure 1 provides a flowchart of the system architecture decomposed into the software
(above) and WSN hardware (below) components. The WSN consists of two major components:
remote light sensors and a base station with a central radio receiver and computer. Remote light
sensors are stationed at strategic locations throughout the indoor space and transmit local
illuminance data to the base station using radio transceivers. The central base station receiver
relays the data to the base computer through a serial port, and the data are stored locally in a
SQLite database.
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Figure 1: System architecture showing hardware and software components

Once the data are collected from the WSN, the data processing modules are called for
regularizing the matrix dimensions, eliminating zero illuminance readings during daytime,
eliminating redundant data, and smoothing. The database stores the illuminance readings by
mote number, Unix-time stamp (primary key), date and clock time, sky condition at the nearest
weather station, solar altitude and azimuth, cluster ID (discussed later). The software modules,
written in Python, include a database driver, facade orientation prediction, a sun position
calculator and programs for clustering, data processing, indoor light distribution and day-
ahead prediction. The database driver module can directly call historical and forecast weather
data, like the hourly sky conditions, temperature and relative humidity from the underground
repository using their API. Solar altitude and azimuth are calculated using the Astronomer
Almanacs solar position algorithm [21]. The same driver module is also used to forward the
illuminance readings to an online database following a Simple Measurement and Actuation
Protocol (sMAP). sMAP was developed by UC Berkeley as a single web based platform for
accessing large volumes of data from all possible sensor points from a multitude of disparate
and distributed data sources such as building management systems [22,23]. We will describe
the light powered WSN platform in detail in section IV, and discuss the components of the
software in section V.



FINAL REPORT

1. Design & implement tests for energy performance assessment of solar/light-powered
sensor platforms.

The WSN remote light sensors (Figure 2) are centered on the TelosB platform, an open-
source microprocessor-based remote sensing platform developed at UC Berkeley. Illuminance
data are collected by the TelosB’s onboard Hamamatsu S-1087 photodiode and transmitted to a
base station receiver via the IEEE 802.15.4 layer over a five-minute duty cycle. Each remote
sensor is fitted with a Sanyo AM-1815 photovoltaic (PV) cell to harvest ambient light energy in
the indoor space. The energy harvesting system centers on the Cymbet CBC-3150 energy
management module to regulate electrical power generated by the PV cell. In addition to the
energy harvesting system, the units have an auxiliary battery to facilitate system start up and
ensure reliable operation in low light conditions (Figure 1).

Figure 2: Remote light sensor with Sanyo AM-1815 photovoltaic cell

The TelosB platform’s microprocessor is programmed using the open source TinyOS
software, and the remote light sensor’s default energy consumption during the sleep state and
transmission periods were measured. The open source TinyOS code was modified to minimize
the remote light sensor’s energy consumption. The data transmission period was reduced from
100 ms to 40 ms, the MCU clock speed was reduced from 4 MHz to 1 MHz, and an internal
power-saving configuration was used to disable the TelosB microprocessor during the sleep
portion of the duty cycle.

Studies have shown that ambient light energy harvesting can be suitably employed to
power wireless sensor networks [24,25]. For a light sensor platform, energy harvesting from
ambient light is a natural choice. In order to assess the feasibility of this method, the power
output of the Sanyo AM-1815 was characterized at several light intensity levels. For each case,
the PV cell was exposed to a constant illuminance under varying electrical loads. The electrical
output of the cell was recorded at each load point.

2. Plan & deploy real-time data acquisition with solar/light-powered sensor platforms
with inverse model platform at 2 operating testbeds. Record time for installing data
acquisition drivers for disparate data sources.

An installation guide was written to guide users through the software installation and
sensor configuration process for operating the Smart Lighting system. This installation guide
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was used in alpha testing at Sutardja Dai Hall in UC Berkeley and in the Berkeley Energy and
Sustainability (BEST) Lab. A six node wireless sensor network collected data at the full-scale test
beds for two months. The data were subsequently used for software training and validation.
Although this alpha test of the software installation was achieved in 30 minutes, some optional
features were not included. The alpha testing also revealed that the system would benefit from
some additional features, such as on the fly installation from a smartphone, sensor identification
and relational database creation.

As aresult, a Guided User Interface (GUI) and written instructions were developed to
ease the installation process. After the installation GUI for a Linux operating system was
completed, the process was tested with four novice users. Total installation time and
encountered problems, if any, were recorded. Another novice user tested the installation
program from scratch on a separate Linux computer; the user provided detailed feedback and
the breakdown of time required for each step.

Sensors were deployed across two cubicles in an open-plan office space in the
Sustainability Base (S5B) at the NASA Ames Research Center. The Sustainability Base is a 50,000
sq. ft. LEED Platinum certified high performance office building at NASA Ames Research
Center. The SB aims to redeploy innovations and technologies originally developed by NASA
for aerospace missions to monitor and control building systems while reducing energy and
water consumption. The ultimate vision of the SB is to provide a research test and
demonstration site for different sustainable technologies and concepts. The three primary
research objectives involved in this vision are to reduce building energy consumption and
operating and maintenance costs, as well as to improve employee comfort levels.

Seven sensors were deployed on workstations and two sensors were placed on the walls
near the windows. Layout of the test bed cubicles in 3D model with sensor locations (left), heat
map of indoor light distribution (middle) and a photograph of the test bed (right) are presented
in Figure 3. Sensors 1, 2 and 3 were located at incremental distances from the window node 8,
covering the work plane across the entire cubicle and sensors 5, 6 and 7 were replicated in the
adjoining cubicle. Sensor 4 was located on top of a low height partition between the two
cubicles. Sensors 1 through 7 will be referred to as workstation sensors in the rest of the report.
The goal is to use all of the above sensors for model training, but only deploy 50% or fewer of
these eight sensors to predict the light level across all the workstations during the operational
phase of intelligent lighting system. The sensors collected data for several weeks, reporting the
data to a local server. Real-time trends could be accessed and viewed from sMAP and a
dedicated webpage. The artificial light statuses from four controllable luminaries were collected
from lighting system data logs and were fed into the same database. Training and validation
data were sampled from May 25 - June 5, 2012 and June 8 - June 20, 2012, respectively. During
the training and validation period, the building was occupied and experienced normal
operations. Illuminance data continues to collect from the same test-bed at SB. One of the SB
nodes is equipped with a solar panel for indoor light harvesting.

10
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Figure 3: Cubicles at Sustainability Base from various perspectives: 3D CAD model with sensor locations (left),
heat map of light distribution with sensor positions (middle) and photograph of test bed (right)

3. Complete inverse indoor light model using data from WSN. Evaluate time required
for consistent model performance. Implement initial optimal sensor placement based
on sensed data.

The raw light data can be noisy due to dropped packets, redundant communication
between the receiver and the sender nodes and low sensor accuracy. Other errors may stem
from sensors that are shadowed or covered due to human activities or due to battery power
drainage. Such errors must be handled with sensor validation algorithms prior to basic data
processing. The patterns in the data generated by each of these errors could be simulated and
labeled for comparison with future data. Alternatively, the error patterns could be learned
when the lighting system is running. The latter was chosen to avoid intervention in real
buildings.

A tolerance was proposed based on the moving average of 30-minute windows of light
data. If the difference between the current light level and the immediate past light level is
greater than the difference between the moving average and the past light level by a threshold
percentage, chosen as a function of the light levels, then the current light level is assumed to be
erroneous, as shown by equation 1.

N

m. = =1 If xi-1 — xi > a(xi-1 — mi) then replace €))

Here x; is the illuminance reading at current time step i, m; is the moving average until
time step i-1 and N is the averaging window. The quantity 4 in equation 1 is a function of
x;_; —m;, determined iteratively. The erroneous reading is replaced by an average light level
from the same half hour from the past seven similar days. The similarity between each pair of
30-minute time spans is calculated based on the day-to-day difference between averages of
illuminance readings in that time span. The average light values over seven 30-minute time
spans closest to the current 30- minute average were chosen to replace the erroneous readings.

After the above processing we performed exponential smoothing of over 40 minutes
windowed data and moving average over one hour windowed data, which were archived along
with raw illuminances. Imputation was not performed as data points from various sensors with
the nearest time stamps were fused for the inverse models.

11
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Ray-tracing light models can accurately approximate the indoor light distribution of
buildings. These models, however, require accurate building and furniture dimensions and can
be difficult to develop, requiring technicians and professional experts for calibration. An inverse
model, by contrast, is a reduced-order model with only statistically significant inputs or
features, and hence can be computationally inexpensive to perform simulations within a control
loop. For these reasons, an inverse model is a promising choice for a predictive lighting control
system designed for ease-of-use. Inverse problem theory describes methods by which a model
of a system is developed by: (1) parameterizing the system in terms of a set of model parameters
that adequately characterize the system in the desired point of view, (2) making predictions on
the actual values based on relatively simple physical laws and given values of the model
parameters, and (3) using actual results from measurements to determine the model parameters
[26].

Multiple linear regression is an efficient and relatively simple procedure that can find a
linear relationship between multiple regressors and a regressand. The ordinary least squares
(OLS) method functions to create a best linear fit of a given dataset by minimizing the sum of
the squared residuals. Based on this performance improvement achieved by the Sun Position-
Based Model, a piecewise linear relationship between artificial and natural light sources and the
illuminance measured at a workstation was assumed, with model parameters varying with
solar altitude and half of the day. The time scale of each linear model is 30 minutes. Considering
the periodic nature of daylight, unpredictability of sky conditions and mismatch between onsite
sky condition and weather station data, the daylight data were clustered into smaller sub-spaces
using half-hourly means and standard deviations of light levels as features. Figure 4 shows a
wide and comparable distribution of daylight under different clouded sky conditions obtained
from the weather data. The lack of identifiable relationship between weather station data and
onsite light distribution precludes the use of regional sky conditions as a potential feature in the
light models.
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Figure 4: Hourly daylight distribution under scattered clouds (left), partly cloudy (middle) and overcast sky
conditions (right).
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Dividing the data into half-hourly bins takes into account variations in the solar altitude
at a lower resolution than our prior consideration [27]. The choice was made to accommodate
tradeoffs between data requirements for convergence of clustering and model accuracy.
Clustering was used as a proxy for sky conditions, with a constant number of clusters.
Clustering algorithms use unsupervised learning to discover natural groupings in unlabeled
data. Clustering allowed the diverse onsite sky conditions to be accounted for without using
actual weather data. The K-means clustering algorithm provided simplicity [28] and availability

12



FINAL REPORT

of variants [29]. Letting z ={zi} for i=1,2,...n gives a 2D vector of mean and standard deviation of
measured sunlight at the window for every half an hour during the day. Letting ¢ ={ci/ for
k=1,2,...K creates K clusters in each 30 minutes interval. In this case, K=3 was used as a constant,
due to limited data points on one hand and empirical observations of the mean and standard
deviation of daylight levels on the other. K-means clustering partitions the data by minimizing
the sum of squared distance between centroid of cluster cx, identified as ux and zi € cx. The
squared error between each zi and cx is given by equation 1 and equation 3.

J(c)= Dz - IF
x,€Ec, (2)

J(C) = i 2 llz, -, IP

k=1 x;Ec;

One limitation of K-means is that the optimization problem presented in equation 2 can
converge to local minima, which may differ with different random initializations of the
centroids. However, most random centroid initializations resulted in only one or two different
final centroids, thereby obviating refined initializations. For this work, the K-means module of
Scipy Python was used with 20 initializations of cluster centroids and 100 iterations per model.
The centroids were initialized randomly as subsets of z.

The smoothed illuminance mw at each workstation for w=1 to W (W is the number of
workstations) for each cluster can be modeled as a linear function of artificial light statuses es for
s=1 to S artificial lights in the influence zone and illuminances measured at other workstations
{mi, ... Mmw1, Mmw1, ... mw). The following multivariate regression model was trained on the
clustered photo-sensor data at each workstation.

m,, =aymq+ -+ My _1 + QyyMyyq + o+ aymy + freg + -+ fses + € (3)

a,, and B, are model parameters which can be grouped together in a vector b, and « is
random error. To solve this equation, the method of ordinary least-squares provides a and g
such that they minimize the sum of the squared residuals. Aggregating across all the
workstations and simplifying in matrix formulation gives:

Y=Mb+e 4)

Where Y is a vector {my, ... muw,...mw} of workstation illuminances and M is the input
vector consisting of regressor illuminances and artificial light statuses. Solving for b produces
equation 5 below. This equation is the Ordinary Least Squares Estimator (OLS), which provides
the best-fit linear model for the data.

-1
b= (%Zv%:l mwm\,/v) %szlgl myYw (5)

One of the challenges in multivariate regression using large-scale distributed sensor data
are the choice of appropriate regressors that minimize over-fitting and improve prediction
accuracy of the inverse model. The goal is to use sensor data as regressors and the optimization
problem is to decide the location of the sensors for optimal prediction across the workstations.
Spatial or geometric information about the distribution of photo-sensors and artificial lights
would be useful in initial screening of regressors. For example, the physics of light attenuation
as a quadratic distance relation can be used in regressor selection. Precise location information
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of the sensors was used at the windows, which are likely to be places with highest variance in
the light field. The rest the algorithm is automated to iteratively pick the best set of regressors
that maximize prediction accuracy based on the percentage root mean square error of
prediction. The algorithm selects those sensors that carry the maximum information about the
rest of the light field. For example, the initial set of optimal sensors in the developed algorithm
only contains a daylight sensor located near the window. The rest of the regressors are
iteratively added from a set of W sensors, resulting in optimal sensor subset. By restricting the

w!
(w=-r)!
=1,2,3...0.5w. The optimal sensor sets for all the workstations are saved in a matrix. A set of

total sensor deployment to 50%, the number of iterations per workstation amounts to forr

sensors with size less than or equal to 0.5w and the highest occurrence in the optimal sensor
matrix is picked. This method is sufficient for the small number of sensors that are deployed (w
= §8). The above approach would be computationally expensive without at least low-resolution
spatial information, such as room or hall dimensions.

With data collected at NASA Sustainability Base, several combinations of prediction and
validation sets were tested. The inverse model was tested on new and old data sets, and the
selected regressors were compared. Testing training data of various lengths allowed the amount
of training data required for consistent performance to be determined. Prediction and validation
data sets for the inverse indoor light model were also tested across seasons and over multiple
years, such as validating March 2014 data based on training data from March 2013.

4. Develop daylight prediction model for each window in the test beds. Prediction
accuracy should be enough to minimize the number of sensors required.

The goal of day-ahead prediction of light distribution is to predict the available lighting
load shedding from a building, which could be reliable contingency reserve, spinning and non-
spinning reserves. Most of these load participations require a short response time of one second
to a few minutes and a total commitment of one to two hours. If a minimum lighting load shed
for two hours could be guaranteed, it could be determined whether continuous load shed
would be comfortable to human eyes. Experiment shows that dimming artificial lights by even
80% is tolerable for most people in presence of sufficient daylight. Therefore, this reduces the
problem to prediction of daylight availability in the next two hours. Such predictions will be
important for spaces with low solar penetration.

Many researchers have focused on short-term predictions of daylight. For example, Lu
et al. (2012) proposed a short-term prediction of daylight using weighted linear function of
historical data, with the weights being determined by a mean square error based similarity
metric between current day and historical day [12]. Day-ahead prediction is more challenging
and would be necessary for long-term demand response (DR) . Most day-ahead predictions use
numerical weather models. Several researchers have proposed day-ahead prediction of building
energy components from smart meter data using Gaussian Process models as function of
temperature and time [30], and as neural network support vector functions of forecasted
temperature, humidity and solar radiation [31].

Data-driven models of PV power output have also been investigated, with solar
radiation as the connecting variable. In fact, neural networks are the most popular approaches
for PV output prediction. A day-ahead prediction of indoor light is proposed as a support
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vector regression (SVR) model. The predictive model of daylight focuses on the windows,
owing to high hourly and daily variance of daylight compared to relatively uniform artificial
light schedule. For introduction to SVR refer to Smola and Schélkopf [32] and LibSVM guide
[33]. The advantages of epsilon-SVR over OLS regression include flatness of function and error
tolerance, in addition to the ability to handle non-linearity via kernels. The flatness of the
function means SVR algorithm searches for small weights resulting in a more generalizable
model. Studies have shown that accuracy of support vector machine (SVM) based models of
day-ahead PV power prediction can be improved by including more weather parameters in the
features. In fact a complete ensemble of solar radiation, humidity, cloud cover and temperature
results in the highest model accuracy. For this model, temperature, sky conditions and the
hourly moving average of past three days of daylight are used as features.

5. Perform energy simulations in different demand management scenarios. Develop
demand response strategies at lighting levels with 10%, 15% and 20% load shedding.

A robust daylight prediction model using Support Vector Regression (SVR) was
developed for the purpose of demand response (DR). With an accurate daylight prediction
model, DR policies can be implemented with a single days’ notice in commercial buildings. In
order to evaluate the potential benefit of select DR policies, real data were used instead of
predicted data. It is important to note that energy savings from DR policies are additional
savings on top of the everyday reductions due to daylighting. Since the artificial lights at the
Sustainability Base have not yet been controlled based on these algorithms, the artificial light
demand is estimated based on the difference between the lighting target and the daylight
availability over the course of the day (Figure 5).
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Figure 5: Sample data at a central desktop (Sensor #2) with estimated artificial light demand. Daylight represents
the average sensed data over one weekend, and the desktop achieved a target illuminance of 280 lux over the time
frame. Non-work hours are hatched in grey.

Demand response policies were created for different lighting and usage scenarios. It was
determined that continuous dimming and load shifting (e.g., changing work hours to
accommodate more use of artificial light) held the most potential as DR policies in lighting.
Dimming takes into account the fact that the sensitivity of the human eye is relatively low at 500
Lux. The recommended lux level for standard office work is 500 lux [34], however sensor data
showed that desk spaces at the Sustainability Base often operated at lower illuminance levels.
According to experiments conducted by Luckiesh and Moss (1937) the human tolerance range
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at any light level is approximately 50% [35], which means at 300 lux the perceivable change is 150
lux (adopted as the European standard). Load shifting on the other hand provides an unique
solution where energy can be saved by simply shifting the work hours rather than adjusting the
light intensity.

Data over four months at the Sustainability Base was used to assess the impact of two DR
policies. A worst-case scenario was represented by evaluating the policies at Sensor #2 (see
Figure 3 for placement), which had on average the lowest illuminance compared to other
locations. It was assumed that since the artificial lights are off during weekends,! the weekend
data could represent the daylight contribution to the total illuminance during an adjacent week.
Current artificial light data were calculated as the difference between the sensed data during the
week and the daylight profile, taken from weekend data. From this, the times when artificial
lights were on and off and the total number of work hours in a day could be evaluated. The
artificial light illuminance required was calculated to be the difference between the set target
and the daylight profile over the workday. The two DR policies were evaluated for four
separate time frames in 2012 (late May, early June, mid-June, and early August).

A MATLAB script was written to evaluate the two proposed DR policies in a way that
allowed for rapid iteration. To estimate load shedding, the area under the artificial light curves
was evaluated by means of the trapezoid rule. While a scaling factor between energy and
illuminance can provide an energy measurement, the load shedding (percentage) can be
evaluated from the illuminance-time plot directly, assuming the scaling factor does not vary
with system load. For the load shifting, the time period that maximizes the total amount of
daylight was calculated based on the area under the daylight prediction model. For the load
shedding, the average illuminance target was decreased such that the illuminance would not
drop below the detectable light level for a human (50% of current level) [35,34]. For both
policies, load shedding was calculated based on the area under the artificial light curves for the
DR day and the non-DR day.

6. Perform lifecycle cost and energy analysis of the retrofit system and user evaluations.

The lifecycle cost was determined through a life cycle assessment (LCA) in Sustainable
Minds. Sustainable Minds is a cloud-based LCA software package that evaluates products
against the TRACI 2.1 impact categories, which are: acidification, ecotoxicity, eutrophication,
global warming, ozone depletion, fossil fuel depletion, carcinogenics, non carcinogenics,
respiratory effects, and smog formation [36]. The objective was to determine the environmental
return on investment of the intelligent lighting system and identify which components within
the intelligent lighting system are most impactful.

The system was analyzed from cradle through the use phase for the base station and
sensors (Figure 6). End of life considerations and the dimmable ballasts were excluded because
of insufficient data, and it was assumed that the required computer is non-dedicated, therefore
excluding it from the analysis. The functional unit was set as the lighting needs for a 500 square
meter office space for one year with an average intensity of 500 lux, the recommended light
level for standard office work [37]. This was chosen to aid comparison to a previous life cycle

! Confirmed by employees and the pattern of the data.
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study by Dubberley et al. (2011), where a previous version of this intelligent lighting system
was analyzed through the Economic Input Output Life Cycle Assessment (EIO-LCA) [38].
Previous research indicated that a sensor pair (one desk sensor and one window sensor) is
needed approximately every 36 square meters [9]. Therefore, the functional unit scaled the
model to include 28 sensors and 2 base stations.

System Boundary

. Recycle
Raw Material Raw Material Component Assembly & :
. —>1 N —> N . —> Use :
Extraction Processing Manufacturing Transportation :

: Landfill

Natural gas extraction ABS production Injection molding case Base Station
Iron ore mining Steel production Wire production Sensors
Copper mining Copper refining Printed circuit board

Sand harvesting Silicon production PV cell production

Capacitors US Grid
B -~ :
ma“e"’ Electricity :

Figure 6: Simplified process flowchart with analysis boundary

Individual components of the base station and sensor were inventoried and weighed. In
order to more conveniently evaluate impacts across component types, components were broken
down into nine categories: casing, printed circuit board (PCB), PV cell, electrical connectors,
mechanical connectors, capacitors, batteries, other electrical components, and external
components. In instances when individual components could not be weighed directly, estimates
were taken based on material and component volume.

The standard lighting energy demand for a 54 square foot office space was estimated at
12 kWh per day based on a previous study by Wen & Agogino (2008) [9]. Since the wireless
sensors do not rely on an external power supply, the energy consumption during the use phase
is only dependent on building lighting demand and savings due to the installed system.
Previous research with this system demonstrated that 50% of lighting energy can be saved from
personalized control of wireless-enabled individually dimmable luminaires, and an additional
20% of energy savings could be achieved with daylight harvesting [7-9]. However since the
actual energy savings are variable and this value has not yet been verified with the current
sensor platform, several energy saving scenarios were examined. Outcomes were evaluated by
Sustainable Mind’s single score (millipoints), which represents the yearly environmental load
for one person in the United States [39], as well as the global warming potential (kg CO2
equivalent) over 100 years.

User evaluations were provided through student and user feedback as part of an
introductory course to new product development (ME 110, Spring 2014, Agogino). The
intelligent lighting system was tested with members of the Pinoleville Pomo Nation, a federally
recognized Native American in Northern California. After seeing and using the sensors, tribal
members provided feedback verbally, while students filled out an online survey at a course
tradeshow.
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Project Outcomes

1. Design & implement tests for energy performance assessment of solar/light-powered
sensor platforms.

When using the default open-source code available from TelosB, it was found that the
remote light sensor consumes 0.849 + 0.003 mW of power when in the sleep state and 54 + 3 mW
during a 100 ms data transmission period. This equates to a total energy consumption of 260 + 1
m]J over the nominal five-minute duty cycle. After reducing the data transmission period and
MCU clock speed, the TelosB platform consumed 0.2019 + 0.0003 mW in the sleep state, and a
maximum of 45 + 3 mW during the 40 ms data transmission period. Given these performance
characteristics, the platform uses 62.4 + 0.2 m] of energy over the five-minute duty cycle,
roughly a 75% reduction from the original configuration, without noticeable effects on data
transmission range or reliability.

The resulting performance curves from testing the PV cell under varying electrical loads
and several light intensity levels are shown in Figure 7. Figure 7 shows that at every
illuminance level, a load point exists, which maximizes the PV cell’s power output. Table 1
shows that the maximum output of the PV cell at an incident illuminance of 200 Lux is roughly
equal to the TelosB’s power consumption in the sleep state. At the OSHA mandated minimum
indoor workspace illuminance of 30 foot-candles (~ 320 Lux) [40], the maximum power output
of the PV cell exceeds the TelosB’s power consumption in the sleep state by 0.090 + 0.004 mW.
This excess power is stored in the system’s super-capacitor, providing 1.8 + 0.2 m] of energy
required during the TelosB’s data transmission period. At an incident illuminance of 320 Lux,
the capacitor takes about 20 seconds to store the required transmission energy, and 166 seconds
to charge to a maximum capacity of 14.9 + 0.7 m] at the nominal operating voltage of 3V. In this
way, the energy generated by the PV cell and stored by the super-capacitor over the remote
light sensor’s 5-minute duty cycle is well within the TelosB platform’s energy consumption
requirements.
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Table 1: Maximum PV cell power output

Incident
[luminance (lux)

Maximum power
output (mW)

" " 200 0.196 = 0.004
8 320 0.292 + 0.004
500 0.433 = 0.004

Yoltage Output [¥]

Figure 7: PV cell power output at different controlled
light levels

However, these experiments also showed that the PV cell’s power output is extremely
susceptible to changes in both lighting conditions and electrical load, demonstrating the need
for a management circuit to regulate and maximize this fluctuating output. The CBC-3150
module is equipped with an impedance matching function that varies the load on the PV cell to
maximize the power output. This impedance matching function optimizes the PV cell’s power
output with fluctuating incident illuminance. The CBC-3150 subsequently regulates this
optimized PV power to maintain a maximum output voltage of 3.3 V to the TelosB platform.

A coin cell battery was added to the aforementioned energy harvesting system to
address two major shortcomings. Firstly, the system ceases to operate when exposed to
illuminance levels below 200 Lux. At this incident illuminance, the power generated by the PV
cell is roughly equal to the power consumption of the TelosB platform in the sleep state.
Consequently, no excess energy can be stored in the system’s super-capacitor over the sleep
portion of the duty cycle to power the TelosB platform during the data transmission period. For
the purpose of collecting data during building occupancy, it was deemed necessary to operate
the remote sensors at a minimum illuminance of 50 Lux. Below this illuminance level, the space
is deemed too dark for occupancy, and data collection is no longer required.

Secondly, the energy harvesting system was identified as having difficulties “waking
up” following extended periods of complete shutdown, typically overnight. When the remote
light sensor’s TelosB platform and Cymbet CBC-3150 initially boot up, they require a surge in
power to initialize various systems. It was found that the PV cell was typically unable to
energize the super capacitor to the levels required to overcome this boot up surge until light
levels reached about 500 lux. This often led to the remote light sensors remaining non-
functional until late morning or early afternoon. These two observations led to the conclusion
that an auxiliary battery was required to enhance the system’s operational reliability.

Adhering to these requirements, auxiliary battery power should only be provided to the
TelosB platform during periods when the incident illuminance is between roughly 50 and 200
lux, as illustrated in Figure 8. A window comparator enables auxiliary battery power to the
platform when the voltage generated by a photo-resistor resides within a defined range. The
lower and upper thresholds of this voltage range are initially calibrated to correspond to an
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incident illuminance of 50 and 200 Lux, respectively. In this manner, the auxiliary batteries both
extend the effective data collection period, and provide the energy surge required to boot up the
sensors in low light conditions. If needed, users can adjust the thresholds of the voltage range
using potentiometers, to control the illuminance range during which auxiliary battery power is
enabled. This feature allows users to control the sensor’s boot up and shut down threshold, and
modulate the period over which energy harvesting is enabled. Moreover, this flexible power
management system enables users to easily configure the sensor units to operate efficiently in a
wide variety of locations and incident illuminance levels.

(Lux)

: Hluminance level
: System OFF
: Battery Assist

TN |

llluminance

Time (24 hour cycle)
Figure 8: Remote Light Sensor Power Management

Testing over two months showed that the sensor units were typically shut down for
roughly 12 hours a day, using auxiliary battery power four hours a day, and harvesting light
energy for eight hours a day. Given these performance characteristics, the system had a daily
current consumption of 0.55 + 0.09 mAh at a nominal voltage of 3V. The remote light sensor
utilizes a CR2032 lithium battery, with a capacity of 240 mAh at 3V, allowing the sensor to
operate over a year before requiring battery replacement. It should be noted, however, that the
performance of the system is entirely reliant on ambient illuminance levels and the auxiliary
battery management thresholds set by the user.

Testing at the NASA Sustainability Base has shown that in three months of continuous
testing the auxiliary battery voltage has only dropped 7% and thus is expected to meet the goal
of operating for a year without maintenance. The current sensor platforms operate for an
average of 14 hours per day over the course of testing. Over the same timeframe of 3 months,
the solar cell reliably supplied power to the sensor unit at an average voltage of 2.93 V, with
natural fluctuations due to changes in incident light throughout the day.

2. Plan & deploy real-time data acquisition with solar/light-powered sensor platforms
with inverse model platform at 2 operating test beds. Record time for installing data
acquisition drivers for disparate data sources.

Data were collected at three distinct test beds: Sutardja Dai Hall (CITRIS) in UC Berkeley
campus, the Berkeley Energy and Sustainable Technology (BEST) Lab, and the NASA Ames
Sustainability Base. A six node wireless sensor network collected data at CITRIS for two
months, while 4 sensors collected data at BEST for 6 months. Two sensors were set up to collect
temperature and relative humidity data in addition to light in the BEST Lab for over a week.
These sensors, onboard the TelosB motes, could provide additional insight into the indoor
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environmental quality and could be used to initiate additional energy reduction policies. Data
collection at the Sustainability Base began December 2, 2013 and continues to be collected. SB
data collection at seven workstations occurred while the office was fully in use.

Alpha testing of the installation program at CITRIS yielded an installation time of less
than 30 minutes by a novice user; however optional features were not included. The developed
GUI includes program features such as windows, buttons, loading bars, and entry boxes, and a
supplemental instruction guide was developed (Appendix I). Four novice users tested the
revised installation process. All demonstrated an install time of less than 30 minutes. All of
these installation tests were completed in under 30 minutes.

Another user installed the software from scratch on a separate Linux computer in over
an hour. The most significant error was due to a small coding mistake that caused the TinyOS
build to fail, and this was later fixed in the code. There was also confusion in the order of
installing the sensors and base station, and this was clarified in the instruction guide (Appendix
I). Lastly, the user recommended that the error detection be improved. In another installation
attempt, it was discovered that the installation program encounters problems when a new
version of the TelosB mote is used, while the program encounters no problems with the
previous model. These final errors are currently being addressed and will continue next month.

3. Complete inverse indoor light model using data from WSN. Evaluate time required
for consistent model performance. Implement initial optimal sensor place based on
sensed data.

Figure 9 shows the results of clustering between 10:30 A.M. to 11:00 A.M. (left) and 5:00
P.M. to 5:30 P.M. (right). As per the results of clustering, the distribution of light level follows a
diurnal pattern, justifying the use of 30-minute data bins. For example, in Figure 9 (right), the
mean light level has a narrow range towards the end of the day, 100-370 lux and a wider range
and a higher mean (300 to 750 lux) in late morning. The latter range, however, is much smaller
than the natural fluctuation of daylight. The narrow range can be attributed to building
geometry, lack of exposure to direct sunlight or the limited data acquisition period.
Furthermore, the clusters are distinct in Figure 9 (right) showing high light level with low
standard and low light level with high standard deviation, as expected in clear and partially
cloudy conditions respectively.
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Figure 9: Clustered 30 minutes light data showing 3 clusters, 10:30 AM - 11:00 AM (left) and 5:00 PM - 5:30 PM
(right)
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The comparison of actual and predicted light levels at workstations 2,3,6 and 7 are
displayed in Figure 10. The two cubicles at SB are mirror images of each other, resulting in
sensor positioning at identical locations with respect to the window. For example, workstations
2-6 and 3-7 have similar light profiles over the prediction period. Workstation 5 is a mirror
image of workstation 1.
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Figure 10: Measured and predicted values at workstations 2 (top left), 3 (top right), 6 (bottom left) and 7 (bottom
right)

The Root Mean Square Error (RMSE) of the prediction model (shown in both absolute
value and as a percentage) calculated for the validation period (June 8 - June 20, 2012) is
presented in Table 2. Note that artificial lights have been identified by small letters a, b, c and d.
The bottom row indicates the set of regressors used. Table 2 also lists the optimal set of
regressors for best predictability of light distribution across the workstations. Therefore only
three physical sensors out of eight sensors deployed in the test bed were sufficient to predict the
indoor light field with desirable accuracy. This amounts to 60% fewer sensors deployment
compared to state-of-the-art intelligent lighting systems, which typically place a sensor in each
luminary above each workstation. Results of the Sun Position-Based Model, applied to the same
dataset and using same set of regressors (as Table 2), are presented in Table 3. The average
prediction error across the workstations in the developed algorithm has dropped to
approximately 5-15% (see Table 2) with adequate data processing and clustering compared to
20-45% error using sun position-based data binning (see Table 1). Moreover, the new clustering-
based model shows a more consistent prediction across the workstations with a narrower error
range. The current RMSE is approximately 15-40 lux as opposed to previous 60-250 lux across
the workstations, reported by Paulson et al. (2013) [27]. As observed in Paulson et al. (2013), the
prediction accuracy increases away from the window.

Table 2: Root mean-square error for workstations 2, 3, 5, 6 and 7 using clustering-based model

Workstation 2 3 5 6 7
RMSE (lux) 15.0 33.5 41.0 15.0 31.0
RMSE (%) 8.0 7.0 12.0 8.0 6.0

Regressors 8,1,4 8,4 84,a,b 814 8d
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Table 3: Root mean-square error for workstations 2, 3, 5, 6 and 7 using sun position-based model
Workstation 2 3 5 6 7

RMSE (lux) 140 111.0 570 30.0 80.0
RMSE (%) 300 450 250 30.0 35.0

In order to test the long term model performance, the inverse model was trained and
tested further on new data collected from the NASA Ames Sustainability Base from December
2, 2013 to February 4, 2014. The training times used on the test set were over the first ten days,
from December 2, 2013 to December 12, 2013. Results of root mean square percent error were
within +1% of prediction results obtained for summer months. Based on these results, time
required for consistent model performance has been identified as 7 to 14 days.
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Figure 11: Distribution of light level on three days of May in 2012, May 24, May 25 and May 26

Figure 11 illustrates the daily distribution of light level on May 24-26, 2012. While light
distributions on May 24 and 25 are highly fluctuating, May 26 shows a generally similar but
much smoother profile of light distribution, indicating the time dependence of light
distribution. Therefore a simple regression model using historical values of hourly light levels
may give a good result when May 24 data are used to compute the day-ahead prediction, but
the same does not hold for May 25. RMSE between daily light level on May 24 and May 25 is 11
lux while on May 25 and May 26 is 10 lux. However hourly difference between two consecutive
days may be as high as 600 lux.

The goal was to use season adjustment for the training data to predict for any month of
the year. Cross-seasonal tests of the inverse model demonstrated significant errors, which
appear to be caused by changes in sun angle and/or sensor placement between training and
validation data. At the Sustainability Base sensors were moved and reinstalled on December 2,
2013. As a result, the data were validated with training data from the same season but different
years, and high errors still remained. Data are being further collected at the SB to address the
varying seasonal performance of the model. Clustering based on sun angle rather than time will
also be investigated further.

One of the major goals of adaptive regressor selection is to ensure that the prediction
accuracy demanded by the control system for occupant visual comfort and energy savings is
not compromised. Therefore the impact of prediction accuracy of the inverse model on the
above was analyzed and determined as an appropriate error threshold. The analysis assumes
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that unless the energy savings target is stringent and/or there is a demand response event, any
under-estimation or over-estimation leading to prediction within 300 lux - 500 lux will lead to
inaction. Any under-estimation below actual 300 lux will lead to energy wastage while an over-
estimation greater than 67% above actual 300 lux is likely to cause visual discomfort due to
inadequate light; whereas when the actual light level is greater than 800 lux, inaction resulting
from under-prediction may cause glare.

4. Develop daylight prediction model for each window in the test beds. Prediction
accuracy should be enough to minimize the number of sensors required.

Using 5-fold cross validation, it was determined that forecasted hourly outdoor
temperature, hour of the day and hourly sky conditions are the most important features
affecting the sunlight measured at the window. For similar days, past light levels appeared to
be a better predictor than any of the above features. Besides these, average hourly light level of
past three days was considered as a feature for the SVR. The scatter plot in Figure 12 (left)
shows an approximately linear relationship between hourly light levels measured on two
similar days. Figure 12 (right) on the other hand illustrates the deviation from linearity due to
dissimilar sky conditions. While a linear kernel produced the least mean square error of cross
validation when similar historical days compared to the test period were used in the training,
Radial Basis Function (RBF) kernel was better able to handle occasional non-linearity as shown
in Figure 12 (right).
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Figure 12: Scatter plots showing an approximate linear relationship between hourly light levels of two similar
days (left) and deviation from linearity due to dissimilar sky conditions (right)

Sky conditions “clear’, “scattered clouds’, “partly cloudy’, ‘mostly cloudy’ and ‘overcast’
were converted to numeric values from 1-5, for convenience of SVR. The similarity between the
days was determined by the root mean square error between the sky conditions over 24 hours
period. Depending on the similarity between the forecasted sky condition of the prediction day
and the previous three days, model cost function C, error tolerance ¢ and the RBF kernel
parameter y were adapted for improved prediction accuracy. In SVR, C determines the trade-off
between model complexity and error tolerance. The best set of parameters was found by an
exhaustive search over a range of C=[1:1:10000], while ¢ and y were fixed at 0.1. The result of
SVR based day-ahead prediction of light level on three consecutive days, June 2-4 2012 is
illustrated in Figure 13. The training data consisted of past six days of hourly temperature, sky
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conditions and hourly average light level of the past three days. The minimum RMSE was
approximately 48 lux while the maximum error was 204 lux. The average accuracy of the SVR
model over three days is approximately 92%. The prediction error expressed as root mean
square error (RMSE) was found to be 112 lux on average with smaller error between similar
testing and training light environment.
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Figure 13: Day-ahead prediction of light level on June 2-4, 2012 from forecasted temperature, sky conditions and
past 3 days hourly average measured light level.

The accuracy and predictive capability of first principle models of lighting, using
sophisticated and computationally expensive ray tracing algorithms, vary widely depending on
the expertise and the experience of the modelers, the average accuracy being 20% [42]. In
comparison, ~ 80%-95% accuracy across the test bed, as obtained in this work indicates a model
accuracy sufficient for occupant comfort. Moreover, the spatial distribution of the errors was
found to be consistent except for workstation sensor 3. The temporal distribution of error is
within 10% for most of the workstations in the test bed. Due to negligible under-estimation, the
problem of energy wastage will presumably not be encountered.

Furthermore the model achieved prediction accuracy of 80% - 95% using 60% fewer
sensors than the state-of-art intelligent lighting system, which use one photo-sensor and
actuator per light fixture. A scenario of two to three wireless sensor platforms per occupant
workstation, including daylight sensors, amounts to one platform/6.2 - 9.3 m?, assuming a
standard occupancy of 18.6m?/person as recommended by the ASHRAE standards for
ventilation (ASHRAE, 2010) [43].

5. Perform energy simulations in different demand management scenarios. Develop
demand response strategies at lighting levels with 10%, 15% and 20% load shedding.

Demand response strategies of load shifting (adjusting work hours to accommodate
natural light) and load shedding (decreasing target illuminance) were developed. These
strategies were tested over four months data at the NASA Sustainability Base. Analyses were
completed for four separate cases (late May, early June, late June, and early August), and results
were then averaged across all four cases. Table 4 below summarizes those results.
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Table 4: Mean and standard deviation of estimated savings when two DR policies are implemented. Saving
percentages represent percent reduction in energy load on a DR day compared to a baseline non-DR day.

Policy Quantity Mean  Standard Deviation
) Energy Savings (%) 19 18
L hif
oad Shift Time shifted forward (min) 130 76
Maximum Energy Savings (%) 80 24
Target Reduction to Achieve 13 15
10% Energy Savings (lux) '
Load Shed  Target Reduction to Achieve 20 0
15% Energy Savings (lux) '
Target Reduction to Achieve o7 3.0

20% Energy Savings (lux)

Depending on the case, load shifting could be a simple and effective way to decrease the
load for office lighting. The potential savings from shifting the load (moving the work hours
during periods of higher levels of sun light) showed much variability across the four examined
cases. For example, around 40% load reduction could be achieved by shifting the work day
forward 3 hours and 50 minutes in early June, while in early August shifting hours can not
achieve any noteworthy savings (Figure 14). The total amount of load shedding possible and the
desirable start and stop time for a DR work day are highly dependent on the building
configuration, type of work and time of year, to name a few.
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Figure 14: Sample data at a central desktop (Sensor #2) with average calculated artificial light demand for one
work week in early June (left) and early August (right). Daylight represents the average sensed data over one
adjacent weekend. Non-work hours are hatched in grey.

Load shedding through dimmable ballasts can be an effective and flexible way to meet
various DR targets. For the tested days at the Sustainability Base, decreasing the illuminance
target demonstrated the potential to produce significant load reductions without dipping below
the noticeable threshold for the human eye. Furthermore, goals of 10%, 15% and 20% load
reduction can be achieved by decreasing the illuminance target by only 10 to 30 lux. These
target percent reductions are also on top of any load reductions that occur on a daily basis due
to daylighting and adjusting for user preferences.
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6. Perform lifecycle cost and energy analysis of the retrofit system and user evaluations.

Based on the analysis in Sustainable Minds, the intelligent lighting system represents
123 kg COze per functional unit and 10.5 mPts per functional unit from cradle to gate (resource
extraction to factory gate, before it is transported to the user). The printed circuit board
contributed the largest impacts to the overall system, and most of this impact is in carcinogenics
(Figure 15). Transportation was found to contribute negligible effects to the overall impact. As
determined by this analysis, materials and manufacturing of intelligent lighting system has paid
itself off environmentally once the system has reduced energy consumption by 148 kWh during
its use.

N
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13%
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45%
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24%
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Figure 15: Cradle-to-gate assessment of intelligent lighting system demonstrating total impacts by component
(left) and category (right). Only impact contributions greater than five percent of total are listed.

1. Since the intelligent lighting system may reduce building light energy consumption at
different rates depending on the circumstance, several efficiencies were evaluated.
Figure 16 below illustrates the payback time to the environmental cost of the wireless
devices as a function of efficiency. If the intelligent lighting system is able to reduce
building energy consumption by 70% (50% by user adjustments and 20% by daylight
harvesting), as indicated possible by previous studies [7-9], the cost of the devices
environmentally will have already paid for itself off in energy savings after two working
days. In this use scenario and per functional unit, implementing this system could save
approximately 23,000 kg-CO2-eq in emissions over the course of one year of use (based
on a single functional unit of one office space, 500 sq. meters).

Figure 16: Environmental payback time with respect to building energy savings from the standard lighting
demand [9], represented per one functional unit.
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User studies were conducted to evaluate the plug-and-play features of the sensor
system. Although the 30 min. set-up target was reached, users provided useful suggestions in
regards to integration with cell phones and specific user interface improvements. User
evaluations were also conducted for potential residential applications. The results indicated the
potential for allowing the sensor and light-harvesting casing to be customizable for residential
use. More details for improvements are included in the Recommendations section.

Conclusions

A wireless sensor network with onboard solar panels was developed, deployed and
tested at independent test beds. With the assistance of an auxiliary battery, the solar panels can
self-power the devices with little to no required maintenance. While the PV cell provides power
during hours when incident light is sufficient, the auxiliary battery supplements the cell’s
capabilities in times of low light and upon startup. Over three months of testing at NASA Ames
Research Center, the auxiliary battery voltage has only dropped 7%, indicating that the
platform is capable of sustaining self-power for over a year.

As part of this research endeavor to enable data-driven model-based predictive control
of building systems with the Sustainability Base at the NASA Ames Research Center, a
computationally inexpensive predictive model of indoor lighting has been developed. To this
end, a low power wireless sensor network (with PV-energy harvesting) has been deployed at
three test beds, and a piecewise linear regression model of clustered workstation illuminance,
built on a month of data at seven workstations, has been developed. In this work, clustering
accounts for the complex nature of daylight resulting from unpredictable weather parameters
such as sudden cloud cover and the relationship between building geometry and solar
geometry. The clustering based model was capable of predicting the light levels with 80%-95%
accuracy across the workstations. This was a significant improvement over the researchers’
prior work using sun position based piecewise linear model. Clustering light data by mean and
standard deviation revealed patterns in the data that could be utilized in refining the linear
models.

A support vector regression model was able to predict the day-ahead daylight
availability within approximately 92%. The predicted day ahead hourly daylight availability as
a function of forecasted hourly temperature, sky conditions and hourly average measured
daylight of historical days is a potential valuable input to model predictive lighting control of
grid-integrated buildings. From this model, accurate day-ahead predictions were used to
estimate potential load savings on demand response days. Load shifting (adjusting the work
hours to accommodate maximum daylight) and load shedding (decreasing the target
illuminance) policies were developed for this purpose. On the examined days at NASA Ames,
load shifting and load shedding policies could potentially save 19% and 80% lighting energy,
respectively.

Estimated energy savings and environmental benefits were examined through a life
cycle analysis of the intelligent lighting system. Within the devices, it was discovered that the
printed circuit board was responsible for the majority of negative impacts, but this was minor
compared to the advantages of the increased energy savings. The materials and manufacturing
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of this system easily pays itself off environmentally once the system has reduced energy
consumption by 148 kWh during its use. This can occur after only two days, for example, when
the system is effectively reducing light energy consumption by 70%, as indicated possibly by
previous research [7-9]. In this scenario, it is estimated that the system effectively eliminates
23,000 kg of CO:z equivalent in emissions over one year of use.

Recommendations

This research project has produced an easy-to-deploy, low-maintenance distributed
sensor network that effectively monitors, predicts, and has the ability to be integrated into the
control of indoor lighting conditions. However, the current version of the sensor network is the
product of preliminary research efforts, and consequently suffers from a number of design
inefficiencies that should be remediated through a pre-commercial product development
process. Recommendations are presented to facilitate this development process, and allow for
large-scale implementation and commercialization of the sensor platforms.

The current remote sensors rely on TelosB mote platforms and Cymbet CBC-3150 power
management modules. While these products are highly effective and easy-to-use, they are also
expensive and contain a wide range of integrated capabilities not required for our application.
Consequently, it is recommended that future versions of the remote sensor utilize cheaper, less
capable hardware that is more specifically tailored to the application. For example, the CPU,
radio transmitter, and power management circuit could be integrated into a purpose-built PCB.
This would also allow for a drastic reduction of the sensor’s physical dimensions, lowering
material costs and allowing for more inconspicuous deployment of the sensor network in the
indoor space.

The current version of the intelligent lighting system utilizes a central small computer
(PC) as the network’s central data receiving node, also known as the ‘base station’. This
approach has created complications with regard to operating system compatibility, as the
current radio receiver hardware must be configured to communicate with the PC, requiring a
host of drivers unique to individual operating systems, and even individual versions. In
addition, the current system requires that the PC be wastefully turned on at all times to
complete a very simple task that only requires a tiny fraction of its processing power.
Consequently, it is recommended that a purpose-built base station be developed. This system
could be based on open source CPU platforms, such as the Arduino series, or emerging
“Internet of Things” platforms, such as Marvell’s Kinoma or Samsung’s “SmartThings”.
Regardless of platform, the system could utilize a smartphone as both an interface and a central
node. Independent of the platform type, the CPU should be configured to receive, log, and
process the data from remote sensors and to subsequently transmit control commands to
lighting actuators.

To expand the capabilities of this system, the current sensor technology has been
adapted to collect relative humidity and temperature data (onboard the TelosB) in addition to
lighting. Data has been collecting on these three sensors in the BEST Lab (230 Hesse Hall)
continuously for three weeks. With the addition of these sensors, it is possible to get a picture of
the indoor environmental quality in addition to the illuminance. This could prove beneficial
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when monitoring the effects of demand response policies, for example, since decreasing the
lighting in a space may also cause a drop in temperature. Further investigations should examine
how collecting data on these additional sensors affects power management. Generic data such
as these could additionally drive modeling for smart building energy management and indoor
localization enhanced by environmental data.

Lastly, it is recommended that a set of standardized lighting actuators be developed to
carry out the commands output by the lighting control algorithm. One promising actuation
approach is to integrate a radio receiver and dimmer into standard light switches. When turned
on, these wall switches would receive control inputs from the base station to effectively
modulate lighting levels in accordance with the indoor data collected by the distributed
network. Additionally, significant opportunities exist with actuated lights, such as web-
connected dimming LED bulbs by GE and Phillips [44,45]. These bulbs can receive dimming
signals directly from smartphones, for example.

The PI has had significant prior work in closing the system loop with lighting actuation
and control [7,8,9]. Lighting adjustments based on daylighting and user preference have both
been quantified. The goal of this current research was to develop a “proof of concept” sensing
system for improved and less costly commissioning with lighting estimation and prediction that
could be used in conjunction with such actuation and control strategies. Prior to
commercialization, additional development and testing will be needed to integrate prior
actuation and control algorithms with new smart lights now available on the market.
Additional next steps should also include further testing of the sensing method to identify
failure cases and refine the user interface.

Based on user feedback from a demonstration home near Ukiah, California, there is
potential to develop the wireless sensor network for residential applications. The wireless
system could provide generalized energy reduction practices as well as feedback on
consumption habits and indoor environmental quality. In addition to these benefits, flexibility
in the case design and material allows the system to be tailored towards the target market’s
preference. For example with the demonstration home with the Pinoleville Pomo Nation, users
desired a case made from a natural material such as willow because of values of maintaining
cultural relevance and environmental harmony. Furthermore, culturally informed
visualizations of the sensor data could enhance the societal impact and business value of the
system. Since fewer sensors are required when using a predictive model, the system can be
available at a lower cost, making it feasible for both residential and commercial applications.

The recommendations above are intended to reduce the cost of the system, while
simplifying its implementation in individual buildings and homes. In future product
development efforts, it is suggested that a typical household system be designed with a cost that
reflects the amount consumers are spending on thermostats and other household control items
($100 to $500). The final implementation of the system should only require the user to install the
standard actuators, plug in the central base station, and deploy the remote sensors. Periodically,
the user would extract data from the central base station (via a USB stick), and input this data to
software that provides performance outputs, such as the energy saved and average light level
maintained in the space. In addition, the software will implement the “virtual “sensor
algorithms that were developed, allowing the user to see if any of the remote sensors are
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providing redundant data, or could otherwise be replaced with a virtual sensor, so that the
remote sensor hardware can be more effectively deployed to another room or space.

Public Benefits to California

A recent study at Lawrence Berkeley National Laboratory has shown that similar
lighting control infrastructures, when coupled with shading control, could save 57% lighting
energy and 28% cooling energy [5]. In spite of a few successful pilot studies, as of 2010, 70% of
US national stock of commercial buildings does not have intelligent lighting included in the
new and existing buildings. Of the 30% commercial buildings with lighting systems, 3% have
dimmers, 5% motion detectors, 4% timers and 18% use EMS [15].

For calculating the energy savings over and above existing products, the intelligent
lighting controls scheme indicated are considered as the baseline [15]. It is assumed that 70% of
the office and educational buildings across the country not using intelligent lighting controls is
our target market because these buildings have the largest energy footprint which is 32% [47] of
the total lighting and cooling energy consumption of 6.33 quads Btu [46]. 70% is a conservative
number as this system can also improve the energy performance of 50% of the remaining 30%
non-functioning lighting control systems. In reality, in terms of cooling energy savings, the
fraction of this 70% commercial space should be considered that have active cooling. Therefore
this system will offer savings over 1.32 quads Btu of commercial primary energy. Furthermore,
it is estimated that a 10% adoption of this intelligent lighting system in commercial buildings
could save 0.2-0.25 quads BTU of energy nationwide [48]. The total average estimated energy
savings is approximately 20% for lighting and 10% for cooling with some extended energy
savings assuming that better controllability over heat gain will facilitate adoption of more
energy efficient cooling technologies in moderate climates in California. In addition, we
estimated that the system could eliminate 23,000 kg of CO: equivalent in emissions over one
year of use with 10% market penetration.

A breakup of expected energy savings by components of this product is as follows:

* Operation and control: Lighting energy savings from granular occupancy detection
based dynamic light zoning, conflicting user preference satisfaction over and above
baseline intelligent lighting controls: 20%. Cooling energy savings from active heat gain
control as part of integrated lighting and smart shading control: 10%. These numbers are
over the savings achievable per building using bests of the market

* Streamline commissioning method: A streamlined and less resource intensive
commissioning and retrofitting process coupled with accurate model based prediction of
expected energy and cost savings could enhance the implementation of lighting retrofit
in 20% of the target commercial buildings (assuming increase in the commercial
building stock by the time of product commercialization and licensing).

* A further 15-50% of indirect cooling energy savings is possible depending on the climate
zone due to better adoption of thermally active systems.
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Cost savings will be achieved from reduced installation costs and extended energy bill
savings. Moreover, because this plug-and-play system utilizes a predictive inverse model for
control, it drastically minimizes commissioning time, which can take months for existing
lighting retrofit solutions with no guarantee that the results work after occupancy or room
changes.
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Appendices
Appendix I: Installation Guide

Smart Lighting Wireless Sensor Network: User’s Guide

I. Ubuntu Installation

1. Open your terminal.

a. Search for terminal.

b. Double click the terminal icon.
c. Type ‘git clone git@github.com:elizabethcheng/smartLightingInstall.git’ into
your terminal and press “Enter.’

2:57PM R Smart Lighting 3¢

® '© Eerminal

Eii Applications

Terminal

2. Open your ‘smartLightingInstall’ folder using terminal.
a. Type ‘cd smartLightingInstall” into your terminal and press ‘Enter.

4

smart@smart-EB1007P:~$ cd smartLightingInstallD
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3. Runthepre---installation program from the terminal

a. Type’shpre---install.sh’in the terminal and press ‘Enter.”

b. You may be prompted by the terminal to enter your password. If you are,
enter your computer password and press ‘Enter’ to continue. NOTE: the
password text may not be displayed while typing.

C. The pre-—install.sh program should run for approximately 10---15 minutes.

smart@smart-EB1007P:~$ cd smartLightingInstall
smart@smart-EB1007P:~/smartLightingInstall$ sh pre-install.sh

[sudo] password for smart:

4. Run the installation program from the terminal.
a. Type ‘python install.py’ in the terminal and press ‘Enter.” The Smart
Lighting Installation Wizard window will open.
b. You may be prompted by the terminal to enter your password. If you are,
enter your computer password and press ‘Enter’ to continue. NOTE: the
password text may not be displayed while typing.

smart@smart-EB1007P:~$ cd smartLightingInstall
smart@smart-EB1007P:~/smartLightingInstall$ sh pre-install.sh
[sudo] password for smart:

smart@smart-EB1007P:~/smartLightingInstall$ python install. py[]

5. Step through the installation wizard to set up your sensor network.

a. Follow the instructions of the installation wizard to install TinyOS, sMAP,
light sensor motes, the base station mote, and to start the WSN.

b. Throughout the installation, the terminal may prompt you to enter your
password. If you are, enter your computer password and press “Enter’ to
continue. NOTE: the password text may not be displayed while typing.

¢. Throughout the installation, the terminal may ask whether or not you want to
continue installing programs. Type “yes’ in the terminal and press “Enter’ to
continue the installation.

d. Note on sensor installation:

i. For LIGHT SENSOR MOTES: Unplug each light sensor mote from
the USB port after you finish installing it (have one sensor plugged
into the computer at a time).

ii. For the BASE STATION: After the base station is installed, leave it
plugged into the computer.
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Terminal Help

~$ cd smartLightingInstall
~/smartLightingInstall$ sh pre-install.sh
smart:

~/smartLightingInstall$ python install.py
smart:

_

_ Next | Cancel

6. Once you have exited the installation wizard, you have installed all necessary
components of your WSN. Congratulations!

7. (Optional) Create your local database
a. Wait two weeks for sMAP to collect data before creating your local database.
b. Open your ‘smartLightingInstall’ folder from terminal (see instructions in Step

4).

c. Type ‘python Database.py db_info.txt’ into the terminal and press “Enter.”
d. Your new local database, ‘data.db’ will be in your ‘smartLightingInstall’

folder.
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California Energy Commission . .
Energy Innovations Small Grant (EISG) Program Questlonnalre

PROJECT DEVELOPMENT STATUS

Answer each question below and provide brief comments where appropriate to clarify status. If you
are filling out this form in MS Word the comment block will expand to accommodate inserted text.

Please Identify yourself, and your project: PI Name Grant #

Overall Status
Questions Comments:

1) Do you consider that this research project proved | Yes, the research proved the feasibility of our proposed concept.

the feasibility of your concept?

2) Do you intend to continue this development Although the research proved feasibility of the proposed
effort towards commercialization? concept, the lessons learned also indicated that a commercial

platform could be made smaller and less expensive if we

integrated our own sensors and computing platform.

Engineering/Technical

3) What are the key remaining technical or The product has been demonstrated.
engineering obstacles that prevent product
demonstration?

4) Have you defined a development path from Not yet. This is our next step.
where you are to product demonstration?

5) How many years are required to complete One year for a prototype of a commercial platform, depending
product development and demonstration? on whether funding is obtained.

6) How much money is required to complete $100,000 for research staff time and components.
engineering development and demonstration?

7) Do you have an engineering requirements No, we are developing specifications now as part of our next
specification for your potential product? year effort.

Marketing
8) What market does your concept serve? Originally we focused on the commercial market. The advance

of the Nest thermostat, however, and new internet-accessible
LED lights leads us to believe that a residential market exists as
well.

9) What is the market need? Faster commissioning of smart lighting systems. We believe we
can also add smart energy features in general with temperature
and humidity sensing.

10) Have you surveyed potential customers for We have performed observations and qualitative research.
interest in your product?

11) Have you performed a market analysis that takes | We have performed a competitive analysis of existing products
external factors into consideration? and have identified possible strategic partnerships.




12) Have you identified any regulatory, institutional
or legal barriers to product acceptance?

No regulatory barriers have been identified; in fact, they are
helpful.

13) What is the size of the potential market in
California for your proposed technology?

A recent study in Lawrence Berkeley National Laboratory has
shown that similar lighting control infrastructures, when
coupled with shading control, could save 57% lighting energy
and 28% cooling energy [5]. In spite of a few successful pilot
studies, as of 2010, 70% of US national stock of commercial
buildings does not have intelligent lighting included in the new
and existing buildings. Of the 30% commercial buildings with
lighting systems, 3% have dimmers, 5% motion detectors, 4%
timers and 18% use EMS [15].

For calculating the energy savings over and above existing
products, the intelligent lighting controls scheme indicated are
considered as the baseline [15]. It is assumed that 70% of the
office and educational buildings across the country not using
intelligent lighting controls is our target market because these
buildings have the largest energy footprint which is 32% [47]
of the total lighting and cooling energy consumption of 6.33
quads Btu [46]. 70% is a conservative number as this system
can also improve the energy performance of 50% of the
remaining 30% non-functioning lighting control systems. In
reality, in terms of cooling energy savings, the fraction of this
70% commercial space should be considered that have active
cooling. Therefore this system will offer savings over 1.32
quads Btu of commercial primary energy. The total average
estimated energy savings is approximately 20% for lighting
and 10% for cooling with some extended energy savings
assuming that better controllability over heat gain will
facilitate adoption of more energy efficient cooling technologies
in moderate climates in California.

14) Have you clearly identified the technology that
can be patented?

The algorithms developed may be patentable.

15) Have you performed a patent search? Not yet.
16) Have you applied for patents? Not yet.
17) Have you secured any patents? No.

18) Have you published any paper or publicly
disclosed your concept in any way that would
limit your ability to seek patent protection?

Yes, but we are still within one year for a U.S. patent.

Commercialization Path

19) Can your organization commercialize your
product without partnering with another
organization?

Probably not. We have identified potential strategic partners
and are evaluating suppliers.




20) Has an industrial or commercial company
expressed interest in helping you take your
technology to the market?

Yes, this is one of our potential strategic partners.

21) Have you developed a commercialization plan?

Not yet.

22) What are the commercialization risks?

Mostly time and money for the development.

Financial Plan

23) If you plan to continue development of your Not yet.
concept, do you have a plan for the required
funding?

24) Have you identified funding requirements for Not yet.

each of the development and commercialization
phases?

25) Have you received any follow-on funding or
commitments to fund the follow-on work to this
grant?

No, but we have identified potential funding from a strategic
industrial partner or from a grant to the National Collegiate
Inventors and Innovators Alliance..

26) What are the go/no-go milestones in your
commercialization plan?

Commitment from research personnel.

27) How would you assess the financial risk of
bringing this product/service to the market?

We believe the benefits are huge, and risks low.

28) Have you developed a comprehensive business Not yet.
plan that incorporates the information requested
in this questionnaire?
Public Benefits

29) What sectors will receive the greatest benefits as a
result of your concept?

Initially commercial; but we believe there is a residential
market with benefits as well.




30) Identify the relevant savings to California in
terms of kWh, cost, reliability, safety,
environment etc.

We estimate a savings over 1.32 quads Btu of commercial
primary energy. For calculating the energy savings over and
above existing products, the intelligent lighting controls
scheme indicated are considered as the baseline [15]. It is
assumed that 70% of the office and educational buildings across
the country not using intelligent lighting controls is our target
market because these buildings have the largest energy
footprint which is 32% [47] of the total lighting and cooling
energy consumption of 6.33 quads Btu [46]. 70% is a
conservative number as this system can also improve the
energy performance of 50% of the remaining 30% non-
functioning lighting control systems. In reality, in terms of
cooling energy savings, the fraction of this 70% commercial
space should be considered that have active cooling. Therefore
this system will offer savings over 1.32 quads Btu of
commercial primary energy. The total average estimated energy
savings is approximately 20% for lighting and 10% for cooling
with some extended energy savings assuming that better
controllability over heat gain will facilitate adoption of more
energy efficient cooling technologies in moderate climates in
California.

31) Does the proposed technology reduce emissions
from power generation?

No, other than less power generation will be needed with the
increased energy conservation.

32) Are there any potential negative effects from the
application of this technology with regard to
public safety, environment etc.?

No.

Competit

ive Analysis

33) What are the comparative advantages of your
product (compared to your competition) and how
relevant are they to your customers?

The system requires fewer sensors than competitive products
due to our virtual sensor system. We also offer faster and more
effective commissioning.

34) What are the comparative disadvantages of your
product (compared to your competition) and how
relevant are they to your customers?

We require initial testing in order to collect data and develop
the virtual sensors.

Development Assistance

The EISG Program may in the future provide follow-on services to selected Awardees that would assist them in

obtaining follow-on funding from the full range of funding sources (i.e. Partners, PIER, NSF, SBIR, DOE etc.). The

types of services offered could include: (1) intellectual property assessment; (2) market assessment; (3) business

plan development etc.

35) If selected, would you be interested in receiving
development assistance?

Yes for refining the prototype for a commercial market, market
assessments and business plan development.






