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ABSTRACT
Immediate action is required to mitigate greenhouse gas

emissions and its impact on climate change. Methane emissions
have been estimated to produce 80 times the warming effect of
carbon dioxide and are responsible for a third of anthropogenic
warming. Recent legislation in inspections and penalties for leaks
has motivated new efforts to identify sources of fugitive methane
emissions and remediate them. However, there are major chal-
lenges, costs and safety concerns in identifying and characterizing
leaks in remote and hard-to-reach production sites. New inter-
national satellite data can be used to flag general areas of large
emissions, but do not have the resolution to identify the exact
source or faulty equipment, which is needed to develop a plan for
remediation.

This paper illustrates an integrated ground-aerial smart sen-
sor approach built around a machine learning framework for
methane inspections and characterizations. With the ability to
be rapidly deployed by sUAS (small unmanned aerial systems)
to gather a more localized and ground-level assessment of the
leak, a dynamic optimal placement of sensors can be used to for
improved remediation decision making. A case study is presented
using the methane GasVid leak video dataset.
Keywords: Adaptive sampling, mobile sensors, expected
value of information, rapid deployment

1. INTRODUCTION
Multiple studies (e.g., United Nations’ Intergovernmental

Panel on Climate Change [1]), international agreements (e.g.,
COP26 [2]) and the Federal government (EPA, Inflation Reduc-
tion Act [3]) stress the immediate need to find solutions to miti-
gate climate change. Methane is responsible for up to one-third

∗Corresponding author: agogino@berkeley.edu

of the global warming experienced today. Methane traps more
heat in the atmosphere per molecule than carbon dioxide, so
methane becomes 80 times more harmful than carbon dioxide
for 20 years after it is released. The combination of regulatory
action, technological advancements, and industry commitment
today are driving the market for new innovations.

Measurement of fugitive methane is difficult due to several
factors: methane is invisible to the human eye, has no scent, and
there are costs and safety issues related to site access. Many
production or transmission sites are in unmanned, remote, hard-
to-reach locations above tanks or along pipelines. Today, to detect
and quantify methane emissions at such locations, human opera-
tors often must drive long distances to investigate potential leaks
using hand-held sensors. These remote or large-area assessments
are costly in terms of personnel-hours, equipment, and safety.

UC Berkeley and Squishy Robotics, Inc. (a spin-off of re-
search on space exploration with NASA that provides rapidly
deployable mobile sensing robots for disaster response and re-
mote monitoring [4]) are developing a multimodal system [5]
which first detects the general area of methane leaks via satellite
data or permanently installed regional sensors and then dynam-
ically hones in on the exact locations of the leak with rapidly
deployed sensors to reduce the risk for humans. Our multimodal
sensor approach includes range sensing with sensors attached to
a drone or permanently installed sensors (e.g, tunable optical gas
sensors that detect methane from a distance by mapping voltage
values to light absorption at varying gas levels), fused with data
from ground-level sensors (e.g., contact gas sensors) that can be
dropped by high altitude drones.

In this paper, we describe an AI-decision-analytic framework
that is integrated with a methane-specific remotely-controlled
sensor robot that can be deployed by drones during periodic in-
spections or when prompted by a larger area methane survey (such
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FIGURE 1: Proposed Methane Detection Work Flow.

as from satellite data [6–8]) that reports a leak present in a gen-
eral area. This sensor robot will be able to remain on the ground,
providing persistent local monitoring over days. It will be able
to complement other data from drone-based sensor systems that
must fly at a distance due to safety rules and have limited flight
time that could cause them to miss intermittent gas leaks. The
goal of our multimodal, smart sensor system is to pinpoint the
source and size of the methane leak by providing data that can be
used for remediation planning, and environmental reporting. The
envisioned role of dynamically positioning sensors in a decision-
analytic work flow framework for plant monitoring operations, is
shown in Fig. 1.

2. BACKGROUND AND RELATED WORK
2.1 Sources of Methane Leaks in the Oil and Gas Industry

In the United States, agriculture is the largest source of
methane emissions, while the second-largest contributor is natural
gas and petroleum systems. Methane is released into the atmo-
sphere during various stages, including production, processing,
storage, transmission, distribution, and usage of natural gas, as
well as production, refining, transportation, and storage of crude
oil. Additionally, methane emissions also stem from coal mining.
Around 80% of the Oil and Gas sector’s methane emissions come
from the upstream segment – onshore and offshore oil and gas
production. There are three main sources: venting, flaring, and
fugitive emissions [9]. This paper focuses on solutions to moni-
toring fugitive emissions, of which leaky valves, storage tanks or
other improperly sealed equipment are the most frequent sources.

2.2 Machine Learning for Methane Sensing
Machine learning can be used to improve data analytics over

time for enhanced monitoring, diagnostics, and early warning
of potential failures. Machine learning can also compensate for
limitations in the sensor measurements, response to environmen-
tal conditions, and changes in system parameters [10]. Wang
et al. [11] [12] collected the first methane leak video dataset -
GasVid – with a range of leak types, sizes and imaging distances.
They analyzed the data with 2D Convolutional Neural Networks
(CNN), 3D CNN and Convolutional Long Short Term Memory
(ConvLSTM). They found the 3D CNN to be the most accurate
and robust architecture for these data.

We build on the GasVid leak video data set and supplement
it with calculated (virtual sensor) data to illustrate the proposed
AI-decision-analytic framework in the paper herein. We also
apply the innovative Vision Transformer (ViT) [13] model to test
its robustness in varying leak conditions and its ability to capture
complex patterns in the video data.

2.3 Mobile Robots for Industrial Sensing Applications
Mobile sensor robots can address challenges with incomplete

sensor coverage or sensor failures with permanently installed
sensors [14–16]. Liu et al. [17] provide a review of sensing
technologies used in autonomous mobile robots in indoor ap-
plications. The role of most of the sensors evaluated are for
improved autonomy and not sensing environmental conditions.
It compares popular algorithms used in processing these sen-
sor data and technologies of multi-sensor fusion (Kalman filters,
particle filters, and neural networks). Wu et al. [18] describe
a mobile robotic system for intelligent environmental monitor-
ing with sensors that measure temperature, humidity and airflow
velocity. The system outputs the environmental parameters in ap-
propriate displays for better decision making to improve industry
environments. Arain et al. [19] propose a mobile robot solu-
tion for autonomous gas detection and gas distribution mapping
using remote gas sensing. Their “Autonomous Remote Methane
Explorer” uses a spectroscopy-based remote gas sensor followed
by gas tomography to reconstruct local gas distributions. Their
wheeled robot requires a flat surface and needs to be provided
with a geometric map of the environment for path planning.

Dynamic sensing has also been implemented in applications
using robotic mobile sensing [20–22]. Within mobile sensor
platforms, droppable soft robot platforms are particularly ad-
vantageous over humans in industrial environments due to their
safety and adaptability to a wide range of application areas [4].
Our previous work describes a case study of an industrial work-
flow that integrates mobile sensing with machine learning and
decision-analytic calculations in the context of the benchmark
Tennesssee Eastman data set of a chemical plant [22–25]. Using
a plant model with prior and conditional probabilities of failure,
Bayesian inference was used to identify the most valuable type
and location of physical sensors to be deployed to increase the
decision-analytic value of a sensor network [22]. This paper
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FIGURE 2: Multimodal Data Pipleline for Machine Learning

herein builds on this previous work for use for methane detection
and remediation planning in the oil and gas industry.

3. METHODS AND APPROACH
This section summarizes the opportunities afforded by new

rapidly deployable mobile sensor robots and the proposed AI-
decision-analytic framework for sensor deployment prioritiza-
tion. The data set used to illustrate the framework is described
along with the methods and approaches used.

3.1 Dataset and Data Pipeline
This case study uses the methane GasVid leak video dataset

[11], which has about 0.7 million frames of labeled videos of
methane leaks from different leaking equipment, covering a wide
range of leak sizes and imaging distances. Leak size, defined as
the rate at which methane is emitted from the leak source, ranged
from 5.3 to 2051.6 gCH4/h. Imaging distances, defined as the
distance between the leak source and imaging equipment, ranged
from 4.6 to 18.6 meters. Although not seen by the AI models, the
location of the leak is at datum 0.0 meter. The data were collected
from gas leaks at the METEC (Methane Emissions Technology
Evaluation Center) facility at Colorado State University using
equipment used at typical oil and gas production sites with gas
leak size representative of the majority of leaks in the literature.
However, the public data collected focused on an Optical Gas
Imager (OGI), which can be thought of as a camera for a narrow
wavelength of light associated with methane. Separator videos
were recorded at two point-source leak locations – outlet nozzle

tubes on two different pressure vessel separators used for separat-
ing a well stream into gaseous and liquid components: separator
on pad 1 (13 videos), separator on pad 2 (18 videos). Each rep-
resent a different perspective view of a leak. The pad 2 videos
were used for training and validation, and the pad 1 videos were
used for the testing.

After image processing, a dataset of 591,162 images were
used, where the training set and test set were split according to
which pad they came from, evenly covering all of the imaging
distances used.

The GasVid data set did not include data from low cost gas
contact sensors at the same locations taken by the OGI sensors.
To simulate the results for deploying other sensors in the same
test locations, we developed a virtual sensor to model realistic re-
sponses based on the control data and sensor properties in Section
3.4. This is used to illustrate an example for identifying the most
valuable type and location of physical sensors to be deployed to
increase the decision-analytic value of a sensor network in an oil
and gas extraction site application.

A real-time data pipeline using the AWS Cloud Comput-
ing Platform was developed to support operations of cloud-based
early methane detection through dynamic deployment of sensor
robots. The pipeline efficiently manages diverse data types, in-
cluding sensor readings in JSON format and image data from
robots, ensuring robust data ingestion and real-time processing
capabilities. An integrated alert system facilitates immediate
notifications. A flow chart of the multimodal data pipeline is
provided in Figure 2.

3.2 AI / Machine Learning Models
In the exploration of machine learning approaches for

methane detection and characterization, we evaluated a diverse
array of methodologies: 2D CNNs applied to frames extracted
from videos, 3D CNNs for video data analysis and sophisticated
models like RCNN, ResNet-50, MobileNet. and Vision Trans-
formers (ViT) [13], alongside novel approaches such as Optical
Flow and GAN classification.

ResNet-50 is a seminal image recognition model presented
in the paper Deep Residual Learning for Image Recognition by
He et al. [26]. It stood out for its robust performance and ca-
pability to handle complex visual data. MobileNet is a class of
efficient convolutional models first presented in the paper Mo-
bileNets: Efficient Convolutional Neural Networks for Mobile Vi-
sion Applications by Howard et al. [27]. The MobileNet Model
showcased remarkable promise due to its innovative utilization
of depth-wise separable convolution and point-wise convolution,
enabling significant reductions in computational cost and model
size.

We found the Vision Transformer (ViT) model [13] to be
most effective for this data set. ViT adapts the transformer ar-
chitecture, traditionally used in natural language processing, to
image recognition tasks. It processes images by dividing them
into patches and applying self-attention mechanisms, enabling
it to effectively capture complex patterns and dependencies, un-
like CNNs that rely on local receptive fields. This approach has
allowed ViT to achieve top performance on various image classi-
fication benchmarks, challenging the dominance of conventional
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CNNs in the field [28].
Our preprocessing strategies were equally diverse, involving

background subtraction on video datasets, careful consideration
of sample weights to balance data distribution, and down sam-
pling of images to match the resolution of real camera feeds from
our sensor configurations.

3.3 Expected Value of Information
Fault detection in industrial sensing systems is often per-

formed on sparse data. In such situations, it can be of value to
estimate how much the presence of new information may aid in
improved situational awareness and the remediation of potential
faults. Expected value of information (EVI) is a decision-analytic
approach used to ascertain when investment in discovering new
information is likely useful and cost-effective, especially in data-
sparse situations [29]. EVI depends on the prior distribution
of currently-available information, and hence, is formulated as
a Bayesian approach [30]. The expected value of sample (or
sensor) information (EVSI) is used to determine whether new
observations lead to an increase in utility [31]. The expect value
of perfect information (EVPI) is the upper limit on any EVSI
approach.

In recent years, the use of EVSI to perform efficiency analysis
has been widely used in health economics and related fields. It is
frequently used to determine optimal sample sizes for randomized
clinical trials based on the EVSI of the results of clinical trials
[32]. Another common application is in medical research, where
EVSI is used to determine whether additional research should be
conducted on a topic [33].

EVSI has also been applied to sensing. Maximizing the
global EVSI of all data can be used to produce an optimal spatial
placement of sensors [15, 34]. Such approaches dynamically add
new observations via sequential sampling, at each step choosing
the observation corresponding to the largest increase in global
EVSI [34, 35].

In this paper, we consider the application of EVSI to the de-
ployment of robotic mobile sensors[20, 21] in methane detection
in oil and gas production sites. We define a posterior probability
distribution and use EVSI to describe the expected benefit of sen-
sor data collected by a rapidly deployable mobile robot in addition
to existing data from a traditional industrial sensing system. Ma-
chine learning methods are then utilized to determine the gain in
fault detection accuracy, specifically, methane leak detection.

3.4 Development of a Virtual Sensor
A virtual sensor calculates critical process conditions using

physical sensor readings and mathematical models. They can be
useful when a physical sensor is not available in a particular lo-
cation, but its values can be estimated from other nearby sensors.
They can be used to provide redundancy in the system or improve
reliability through sensor fusion [36]. A calculated value based
on a combination of sensor readings and mathematical models
can be used to identify the combination of variables that best
characterizes a state. This can be of value in identifying the
most effective set of sensors for improving diagnostics at reduced
computation [37].

Sensor Predicts Sensor Predicts
Leak Nonleak

Leak 0.719 0.156
Nonleak 0.012 0.113

TABLE 1: ViT Binary Confusion Matrix with OGI Sensor Data

A virtual sensor is used in our case study to illustrate the
expected value of new sensor information (EVSI) that can be
obtained by rapidly deploying new sensors by aerial vehicles.
We modeled the virtual sensor on an inexpensive light-weight
LEL sensor typical used to identify volatile gases in emergency
response. Its output ranges from 0-100% as a rough measurement
of the threshold level to cause an ignition or an explosion. The
virtual sensor was calculated from control data, assuming the
gas distribution as a Gaussian cone from the leak source and
estimating environmental factors from system variables (e.g., gas
flow, wind speed and direction).

4. RESULTS
4.1 Performance Comparison Between Highest Performing

ML Models
The accuracy of our leak detection models is defined as

the ratio of correctly identified instances to the total number of
instances. Application of our MobileNet model achieved an over-
all test Accuracy of 0.54. The performance varied significantly
across the two classes: 0.90 for “Leak” class; 0.10 for “Nonleak”
class. MobileNet is designed to be lightweight, which involves
a trade-off between accuracy and computational efficiency. This
structure design might reduce its ability to capture the full range
of features necessary for a balanced performance across diverse
classes.

Application of the ViT model produced a much higher over-
all test Accuracy for the binary case (Leak or no Leak) of 0.832,
Recall of 0.822, Precision of 0.984 and F1-Score of 0.895. It’s ac-
curacy in predicting leaks, and non-leaks, were 0.822 and 0.905,
respectively. Table 1 shows the ViT confusion matrix.

Although the ViT model had relatively high accuracy on the
test data as a whole, the set includes six different locations for
placement of the OGI sensor relative to the location of the leak
(4.6 - 18.6 meters). As can be seen in Table 2, the accuracy goes
down as the distance between the leak and sensor increases. As
permanently installed OGI sensors are relatively expensive, most
remote locations may only have one permanent sensor installed.
This sensor would typically be placed at a distance to make sure
the majority of the plant is in its field of view. If the OGI sensor,
perhaps corroborated with satellite data, indicates that there is
a high leak probability, there could be a high value for rapidly
deploying another sensor, such as a localized gas sensor, in order
verify and find the location of the leak in order to send out the most
effective repair team with appropriate parts. The next section
explores the expected increase in accuracy with placement of a
contact gas sensor.

4.2 Improved Accuracy with Contact Gas Sensor
To evaluate the value of adding a new sensor to help with

remediation decisions, we derived a virtual sensor (Section 3.4)
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OGI Overall Leak NonLeak
Distance Accuracy Accuracy Accuracy

4.6 1.0 1.0 0.98
6.9 0.98 0.98 1.00
9.8 0.92 0.91 0.98
12.6 0.81 0.79 0.96
15.6 0.77 0.75 0.97
18.6 0.57 0.51 0.97

Overall 0.83 0.82 0.90

TABLE 2: ViT Binary Accuracy by OGI Sensor Location

to estimate readings from a virtual contact LEL gas sensor under
the control settings used to produce the original GasVid data
set, with Gaussian noise added. This contact gas sensor is most
accurate when it is in the cloud of the gas release and becomes
increasingly less able to detect methane as it is placed away from
the cloud.

For purposes of illustration, we assumed all possible leaky
valves, containers or other equipment, are located in a line at
placements near each of the distances used in Table 2. We use
Bayes Theorem to fuse the results of the contact sensor data with
those of the original OGI data set.

Taking the Visual Transformer output as sensor 𝑂𝐺𝐼, the
virtual gas contact sensor as sensor 𝑉𝑆 and the status of the leak
as 𝐿. The conditional probabilities of 𝑃(𝑂𝐺𝐼 |𝐿) and 𝑃(𝑉𝑆 |𝐿)
can be derived from the relative reliabilities of each sensor. The
softmaxed logits from the ViT model were used as 𝑃(𝑂𝐺𝐼 |𝐿)
and the probabilities calculated in Gasvid Plume models were
used as 𝑃(𝑉𝑆 |𝐿).

Based on Bayes Theorem and assuming that sensors (𝑂𝐺𝐼

and 𝑉𝑆) are conditionally independent, given the status of 𝐿, it
can be concluded that

𝑃(𝐿 |𝐹𝑆) = 𝑃(𝐿 |𝑂𝐺𝐼,𝑉𝑆) = 𝑃(𝑂𝐺𝐼 |𝐿)𝑃(𝑉𝑆 |𝐿)𝑃(𝐿)
𝑃(𝑂𝐺𝐼)𝑃(𝑉𝑆) (1)

NOMENCLATURE
Events
𝐿/𝐿 Actual Leak/No Leak
𝑂𝐺𝐼/𝑂𝐺𝐼 Leak/No Leak reading of OGI sensor
𝑉𝑆/𝑉𝑆 Leak/No Leak reading of virtual sensor
𝐹𝑆/𝐹𝑆 Leak/No Leak reading of fused sensor
Conditional Probabilities
𝑃(𝑂𝐺𝐼 |𝐿) OGI sensor predicts a leak, given a leak
𝑃(𝐹𝑆 |𝐿) OGI fusion with virtual sensor predicts a leak,

given a leak

For the given dataset, 𝑃(𝐿) = 7/8 based on test conditions.
In practice, the prior failure probability based on an individual
plant location could be used.

4.3 Results of Dynamic Sensor Placement and Location
Analysis
Independently (as shown in Table 2), ViT achieved an overall

accuracy of 0.83 with an accuracy of 0.82 for "Leak" and 0.90 for

Fused
𝑂𝐺𝐼 𝑆𝑒𝑛𝑠𝑜𝑟 𝑂𝐺𝐼 𝐹𝑆

Distance Distance Accuracy Accuracy
4.6 4.6 1.0 1.0
4.6 6.9 1.0 0.87
4.6 9.8 1.0 0.75
4.6 12.6 1.0 0.75
4.6 15.6 1.0 0.12
4.6 18.6 1.0 0.12
6.9 4.6 0.98 0.98
6.9 6.9 0.98 0.87
6.9 9.8 0.98 0.75
6.9 12.6 0.98 0.75
6.9 15.6 0.98 0.13
6.9 18.6 0.98 0.13
9.8 4.6 0.91 0.95
9.8 6.9 0.91 0.84
9.8 9.8 0.91 0.72
9.8 12.6 0.91 0.72
9.8 15.6 0.91 0.12
9.8 18.6 0.91 0.12
12.6 4.6 0.79 0.93
12.6 6.9 0.79 0.76
12.6 9.8 0.79 0.66
12.6 12.6 0.79 0.67
12.6 15.6 0.79 0.13
12.6 18.6 0.79 0.13

15.6 4.6 0.75 0.90
15.6 6.9 0.75 0.74
15.6 9.8 0.75 0.63
15.6 12.6 0.75 0.64
15.6 15.6 0.75 0.13
15.6 18.6 0.75 0.13

18.6 4.6 0.51 0.89
18.6 6.9 0.51 0.56
18.6 9.8 0.51 0.46
18.6 12.6 0.51 0.47
18.6 15.6 0.51 0.13
18.6 18.6 0.51 0.13

TABLE 3: Sensor Fusion with OGI and Virtual Contact Sensor. The
Fused Accuracy Should be Interpreted that a Leak is in the Area of
the Virtual Sensor (within 5 m)
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"Nonleak" with an OGI sensor. However, when conditioned on
the distance the OGI sensor is from the leak the overall accuracy
is only 0.57 at 18.6 m, 0.77 at 15.6 m and 0.81 at 12.6 m, not
atypical distances when limited to one sensor in a remote location.

Fused with the virtual contact sensor’s conditional probabil-
ities derived for each video, the results in Table 3 were obtained.
There is information content in the areas that the virtual contact
sensor increases or decreases the accuracy relative to that of the
OGI sensor by itself. For example, a trend of decreasing accuracy
as distance from the leak source increases. This is reasonable as a
contact sensor is only accurate when in contact with the methane
cloud. However, when fused the data provide not only informa-
tion about the likelihood of a leak, but also the location of the
leak. When coupled with a plant layout, this can greatly assist
the remediation strategy in planning the next step.

In the next section, we discuss the implications of a decision-
analytical model to recommend optimal sensor placement with
an example.

4.4 Example AI-Decision-Analytic Scenario
Although an OGI sensor is not expected to find the location or

distance to the source of the methane gas, its accuracy diminishes
with the distance from the source of a leak (see Table 4). In
particular, the true negative probability decreases (0.994 at 4.6 m
to 0.222 at 18.6 m) and the false negative probability increases
(0.006 at 4.6 m to 0.778 at 18.6 m).

However, a contact gas sensor is designed to sample the air
around it and thus has high predictive accuracy near the leak and
has low predictive capabilities far from the source. Consider the
unfused and fused accuracy shown in Table 3. Regardless of
the placement of the OGI sensor, when fused with the virtual
contact sensor (creating the fused sensor FS), the fused accuracy
has information content on the location of the leak.

For purposes of illustration, let’s take the worse-case scenario
where the OGI sensor is placed at 18.6 m and the leak is at zero.
The conditional probabilities of a leak given that the OGI sensor
predicts a leak (true positive) is high at 0.992 as shown in Table 4.
When fused with the virtual contact sensor, the true positive rate
approaches 1.0 and the false negative approaches 0.0 as shown in
shown in Table 5.

If there is a leak, the fused predictions of the leak are highest
next to the leak and decrease further away. Thus, in this case,
dropping a gas sensor between 4.6 and 18.6 meters, then dropping
a second one depending on the results of the first would identify
which piece of the equipment has the faculty leak, providing
information for planning appropriate remediation. In the next
section, we explore dynamic placement of sensors if the expected
value of deploying new sensors is greater than the cost of doing
so.

5. EXPECTED VALUE OF INFORMATION
The Expected Value of Sensor Information (EVSI) is a con-

cept from decision analysis, defined to be the amount a decision
maker should be willing to pay for information to reduce or elim-
inate uncertainty before making critical decisions (see Section
3.3, and is a useful tool for effective management of uncertainty
[38] [39] in fault detection in industry. In this study, the value of

OGI
Distance 𝑃(𝐿 |𝑂𝐺𝐼) 𝑃(𝐿 |𝑂𝐺𝐼) 𝑃(𝐿 |𝑂𝐺𝐼) 𝑃(𝐿 |𝑂𝐺𝐼)

4.6 0.997 0.006 0.003 0.994
6.9 1.000 0.125 0.000 0.875
9.8 0.997 0.385 0.003 0.615
12.6 0.993 0.610 0.007 0.390
15.6 0.994 0.648 0.006 0.352
18.6 0.992 0.778 0.008 0.222

TABLE 4: Conditional Probability of a Leak Given OGI Sensor Read-
ing by OGI Location (m)

Virtual Sensor
Distance 𝑃(𝐿 |𝐹𝑆) 𝑃(𝐿 |𝐹𝑆) 𝑃(𝐿 |𝐹𝑆) 𝑃(𝐿 |𝐹𝑆)

4.6 1.000 0.006 0.000 0.994
6.9 1.000 0.123 0.000 0.877
9.8 1.000 0.272 0.000 0.728
12.6 1.000 0.366 0.000 0.634
15.6 1.000 0.436 0.000 0.564
18.6 1.000 0.473 0.000 0.527

TABLE 5: Conditional Probability of a Leak Given Fused Sensor
Readings with OGI at 18.6 m and Virtual Contact Sensor by Loca-
tion (m)

the additional information that sensor fusion with the deployment
of a chemical gas (virtual) sensor can provide can be quantified.
EVSI calculates the expected improvement in decision making
when an additional sensor is added [34]. EVSI has zero value if
the information obtained from the new sensor does not change
any decisions.

To illustrate the framework in our application on methane
leak detection, assume the scenario where satellite data triggers
a closer analysis of a production facility for a large methane leak.
Assume the cost of sending out a repair crew to be "R" regardless
of whether there is a leak or not as the repair crew will still use
the time to inspect and test even if there is no leak 6. The cost of
a leak includes both the loss of product and added penalties (LC)
Fig. 3.

If the OGI reads "leak", the decision is to either deploy the
repair team or not is determined by whichever has the lowest
expected cost (eq. 2); similarly, if the OGI reads "no leak" (eq. 3)
using the prior leak probabilities and the conditional probabilities
in Table 4.

𝐸𝑐𝑜𝑠𝑡 (𝑂𝐺𝐼) = 𝑃(𝑂𝐺𝐼) ∗ min
(︂
𝑅, 𝐿𝐶 ∗ 𝑃(𝐿 |𝑂𝐺𝐼)

)︂
(2)

Repair Decision Ground Truth Cost
Repair Leak R

No Repair Leak LC
Repair No Leak R

No Repair No Leak 0.0

TABLE 6: Cost table for outcomes of repair decisions, depending
on whether a leak has occurred or not
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FIGURE 3: Decision Tree. OGI is the reading of the machine learning outcomes from the OGI video data. FS is the reading of the Fused
Sensor.

𝐸𝑐𝑜𝑠𝑡 (𝑂𝐺𝐼) = 𝑃(𝑂𝐺𝐼) ∗ min
(︂
𝑅, 𝐿𝐶 ∗ 𝑃(𝐿 |𝑂𝐺𝐼)

)︂
(3)

There is also the option of dropping a chemical gas sensor
via drone if the EVSI is positive. The EVSI of adding the sensor
will be the difference between the expected cost with the sensor
and the expected cost without as shown below (eq. 4) using the
conditional probabilities in Table 5. The concept of the expected
value of perfect information (EVPI) is value of a perfect sensor
with 100% overall accuracy.

𝐸𝑉𝑆𝐼 =[︁
𝐸 (costwith no dropped sensors) − 𝐸 (costwith dropped sensors)

]︁
(4)

Sensors could be dynamically dropped until there is no pos-
itive expected value in dropping more.

In this scenario, the optimal decision of sending our a repair
crew or not will be highly dependent of the cost of the repair crew,

versus the cost of a leak. Table 7 shows the change in optimal
decisions and expected costs as the ratio of 𝑅/𝐿𝐶 increases from
0.001 to 2.0. If the OGI sensor indicates a leak, the optimal
decision is to trust this reading and send out the repair crew as the
true leak probability P(L|OGI) is very high (0.92) until the cost
of the repair is equal or higher than the cost of a leak (𝑅/𝐿𝐶 ≥
1).

However, as the probability of a false negative is high with the
OGI sensor at the 18.6 m location, the situation is much different
as shown in the last column of Table 7. For the value 𝑅/𝐿𝐶
=0.001, where the cost of repair is small compared to the cost
of a leak, the decision remains the same to repair and not drop
a sensor. But for more realistic higher values there is a positive
EVSI and the optimal decision is to drop a gas sensor and not
repair if "no leak" is confirmed by the chemical sensor.

The corresponding expected outcomes using the fused sensor
are show in Table 8. At 𝑅/𝐿𝐶=0.001, the optimal decision is to
"repair" regardless of the sensor reading, as before with the OGI
sensor alone. Thus, in this case, with the same decisions there is
no value (EVSI=0) in dropping the gas sensor and using the fused
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data. However, when 𝑅/𝐿𝐶 is higher, the optimal decision with
fused data has changed to recommending "no repair" when FS
reads "no leak" until the cost of the repair becomes higher than
the cost of the leak. The corresponding EVSI is the difference
between the expected costs with the OSI decisions minus the
expected costs with the decisions made with the fused data as
shown in the last column of Table 8.

How would the results change if the OGI sensor was placed
closer to the leak? The decisions are the same when the OGI
sensor is at 4.6m but are improved with the fused sensor for all
other placements of the OGI sensor with a positive EVSI but
with lowering values as the accuracy of the OGI sensor alone
increases.

Optimal Optimal Expected
Decision Decision Cost with

R/LC OGI OGI OGI Sensor
0.001 Repair Repair 0.001*LC
0.010 Repair Repair 0.010*LC
0.100 Repair Repair 0.100*LC
0.250 Repair Repair 0.250*LC
0.500 Repair Repair 0.500*LC
0.750 Repair Repair 0.750*LC
1.000 No Repair No Repair 0.875*LC
2.000 No Repair No Repair 0.875*LC

TABLE 7: Optimal Decisions with OGI Readings at 18.6 m: With a
prior probability of a Leak of 0.875 and the high false negative rate
of the OGI sensor at 18.6m from the possible leak, regardless of
the OGI Reading (Leak or No Leak), the optimal decision is to play
it safe and repair until the cost of a leak (LC) equals the cost of the
repair R/LC=1.

Optimal Optimal Expected
Decision Decision Cost with

R/LC FS FS FS𝑆𝑒𝑛𝑠𝑜𝑟 EVSI
0.001 Repair Repair 0.001*LC 0.000
0.010 Repair No Repair 0.010*LC 0.000*LC
0.100 Repair No Repair 0.088*LC 0.012*LC
0.250 Repair No Repair 0.220*LC 0.030*LC
0.500 Repair No Repair 0.439*LC 0.061*LC
0.750 Repair No Repair 0.658*LC 0.092*LC
1.000 Equal No Repair 0.875*LC 0.000
2.000 No Repair No Repair 0.875*LC 0.000

TABLE 8: Optimal Decisions with Fused Sensor (FS) Readings at
4.6 m: With the satellite data giving a prior probability of a Leak of
0.875, if the FS predicts a leak it will recommend the same decisions
as the OGI; the optimal decision is to repair until the cost of a leak
(LC) equals the cost of the repair R/LC =1. However, as FS has a
higher nonleak accuracy, it only recommends the repair decision
for the lowest value of R/LC=0.001. The optimal choice at higher
values is not to repair. The Expected Value of Sensor Information
(EVSI) is the difference between the costs using OGI alone (fourth
column of Table 7) and the results in the fourth column of this table.

Optimal Optimal Expected
Decision Decision Cost with

R/L𝑙C FS FS FS Sensor
0.001 Repair Repair 0.001*𝐿𝑙C
0.010 Repair Repair 0.010*𝐿𝑙C
0.100 Repair No Repair 0.088*𝐿𝑙C
0.250 Repair No Repair 0.095*𝐿𝑙C
0.500 Repair No Repair 0.106*𝐿𝑙C
0.750 Repair No Repair 0.116*𝐿𝑙C
1.000 No Repair No Repair 0.125*𝐿𝑙C
2.000 No Repair No Repair 0.125*𝐿𝑙C

TABLE 9: Optimal Decisions with FS Readings for large leaks ver-
sus no/small leaks.

6. DISTINGUISHING LARGE LEAKS FROM SMALL LEAKS
In the previous section, we only distinguished between

"Leaks" and "No Leaks", regardless of the size of the leak. The
Environmental Protection Agency ( EPA) has recently announced
new regulations that heavily penalize large methane emitters from
the oil and gas industry [3]. This heightens the need to be able to
distinguish "Small or No Leaks" from "Large Leaks" that might
be subject to these new heavier penalties.

If we consider the previous scenario where the OGI sensor
is at 18.6 m and the gas sensor is dropped at 4.6 m and define the
Large Leak (L𝑙) category to be 200 ppm or above, the fused ac-
curacy increases to 0.91 compared to 0.89 before mostly because
the nonleak accuracy increases. Unfortunately the leak accuracy
is lower as the virtual contact sensor has become saturated when
only looking at the higher rates. This indicates that a different
type of rapidly deployable sensor might be more valuable with
leak size is a critical factor.

The different repair decisions and associated expected costs
are provided in Table 9. Although the cost ratio appear lower
when comparing the expected costs in the fourth column of Table
7 and 8 with those in Table 9, it will depend on the ratio of the
original leak cost (L) to the new higher large leak cost (𝐿𝑙C).

7. CONCLUSIONS AND FUTURE RESEARCH
In this paper, we used the publicly available methane GasVid

leak video dataset [10], which has about 0.7 million frames of
labeled videos of methane leaks from different leaking equipment,
covering a wide range of leak sizes and imaging distances. The
data were collected from controlled experiments at the METEC
(Methane Emissions Technology Evaluation Center) facility at
Colorado State University. The experiment read OGI sensors
from six distances away from a leak (4.6m-18,6m), first with no
leak, then at six difference leak volume levels.

We applied multiple machine learning models in leak de-
tection and found that the Vision Transformer model [13], not
only achieved top performance with the OGI sensor images, but
it also showed improved accuracy when fused with data from a
virtual sensor calculated from a simulation of an LEL gas contact
sensor using environmental and control variables in the experi-
ment. The virtual sensor was used to simulate the information
value of being able to drop new sensors to improve accuracy and
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find the location of the leak to make better decisions and plan for
appropriate repairs. The accuracy for both the OGI sensor and
the virtual sensor decreased with distance from the leak, as would
be expected. But the fusion of both increased accuracy when the
virtual sensor was in contact with the gas, even for the worse-case
when the OGI sensor was at its extreme location of 18.6 m.

Introducing a decision-analytic framework, we calculated
the expected costs of using the OGI alone at its worse-case lo-
cation and the virtual sensor at all locations, assuming it could
be dropped at any of them. Using the ratio of repair costs to
leak costs (𝑅/𝐿𝐶) from 0.0001 to 2.0, we conducted an Expected
Value of Information analysis to assess the optimal decisions and
expected costs for differing values of 𝑅/𝐿𝐶. The expected value
of information using the fused sensor was positive for most val-
ues of 𝑅/𝐿𝐶, except for extremely small values where it was less
expensive to repair or for large values where the cost of a leak
was less than a cost of the repair.

There is still much work that can be done in the field of
image recognition and classification of methane leaks, given that
they are invisible to the human eye and nose. The application
of cutting-edge learning models like the Visual Transformer and
the ability to rapidly deploy new sensors via drones can greatly
increase the accuracy of methane leak predictions and be used to
develop more responsive remediation strategies.

Another direction in our research is to better characterize the
methane leaks’ volume over time. Classification of the size of
methane leak has been challenging in the literature [11]. We could
improve the accuracy of our virtual sensor by predicting the ideal
height for placing the sensor as the methane plume concentration
follows a Gaussian distribution with the height. In this paper, we
based our virtual sensor on the capabilities of an LEL monitor
sensor used to detect hazardous levels of a combustible gas or
solvent vapor in air, expressed in % LEL, or Lower Explosive
Limit. A 100% LEL is the minimum level that is required to
support ignition or combustion. An LEL sensor is used as a
safety instrument designed to sound alarms when levels of LEL
are above 0%. The LEL level is only a rough indicator of the gas
concentration and is not intended to measure the size of the gas
leakage. Our goal was to show how an inexpensive "dip stick"
sensor could improve accuracy when fused with video images that
can’t easily distinguish between methane and other clouds, such
as water vapor. We intend to develop different virtual sensors
to identify the most critical sensor features needed for methane
detection and leak size characterization. This could be used to
identify which type of sensor would be of the most value for a
rapid deployment or permanent installation. It might also shed
light on the development of a new generation of sensors with the
requisite features.

Future work will also focus on deploying machine learning
models on the cloud for advanced image analysis not possible
with edge computing on the sensor robot. This enhancement will
further improve the system’s adaptability and decision-making
capabilities in real-time methane detection scenarios.

New laws and regulations in 2024 will greatly increase penal-
ties for large leaks. In 2024, the U.S. Environmental Protection
Agency (EPA) published a new rule to implement a “Waste Emis-
sions Charge for Petroleum and Natural Gas Systems” through

the Inflation Reduction Act of 2022 (IRA) [3]. This will be
a key driver to develop technologies that will reduce the costs
and increase human safety associated with measuring methane
emissions. The proposed AI-decision-analytic methodology not
only improves upon the capabilities of handheld or permanently
installed sensor devices but also leverages new satellite data and
the capabilities of small unmanned aerial systems (sUAS) capable
of deploying small sensor robots.

ACKNOWLEDGMENTS
The authors would like to acknowledge Megan Kao Zhang

and the Methane Sensor MEng team (Pranav Veluri, Huachen
Wang, Erik Kenji Takada) at UC Berkeley for their technical
assistance on the virtual sensor analysis. We are very grateful to
Dr. Jingfan Wang and Dr. Adam Brandt’s Stanford team for their
innovative research and for releasing their methane sensor data
for others to use [11].

REFERENCES
[1] IPCC, 2022. “Climate change 2022: Mitigation of

climate change. contribution of working group III to
the sixth assessment report of the intergovernmental
panel on climate change”. Accessed: 2024-05-8,
doi=10.1017/9781009157926.

[2] U.S. Department of State, 2024. Cop28. https://www.state.
gov/climate-crisis/cop-28/. Accessed: 2024-05-8.

[3] EPA (Environmental Protection Agency), 2024. Inflation
reduction act. https://www.epa.gov/inflation-reduction-act.
Accessed: 2024-05-8.

[4] Chen, L.-H., Kim, K., Tang, E., Li, K., House, R., Zhu,
E. L., Fountain, K., Agogino, A. M., Agogino, A., Sun-
spiral, V., and Jung, E., 2017. “Soft Spherical Tensegrity
Robot Design Using Rod-Centered Actuation and Control”.
Journal of Mechanisms and Robotics, 9(2), 03.

[5] Squishy-Robotics. Real-time data for swift, nimble, and
accurate decision making. https://squishy-robotics.com/.
Accessed: 2024-07-14.

[6] NASA/JPL, 2024. Methane source finder: Greenhouse gas
mapping. https://methane.jpl.nasa.gov/. Accessed: 7-2024.

[7] EDF, 2024. Methane SAT. https://www.edf.org/
methanesat. Accessed: 2024-05-8.

[8] ASI, 2024. Prisma: Hyperspectral satellite, capable of ob-
serving from the optical to near infrared. https://www.asi.
it/en/earth-science/prisma/. Accessed: 2024-05-8.

[9] EPA, 2023. Estimates of methane emis-
sions by segment in the united states.
https://www.epa.gov/natural-gas-star-program/
estimates-methane-emissions-segment-united-states.
Accessed: 2024-05-8.

[10] Luo, J., Edmunds, R., Rice, F., and Agogino, A., 2018.
“Tensegrity robot locomotion under limited sensory inputs
via deep reinforcement learning”. 2018 IEEE International
Conference on Robotics and Automation (ICRA), pp. 6260–
6267.

[11] Wang, J., Ji, J., Ravikumar, A. P., Savarese, S., and Brandt,
A. R., 2022. “Videogasnet: Deep learning for natural gas

9 Copyright © 2024 by ASME

 https://www.state.gov/climate-crisis/cop-28/
 https://www.state.gov/climate-crisis/cop-28/
https://www.epa.gov/inflation-reduction-act
https://squishy-robotics.com/
 https://methane.jpl.nasa.gov/
https://www.edf.org/methanesat
https://www.edf.org/methanesat
https://www.asi.it/en/earth-science/prisma/
https://www.asi.it/en/earth-science/prisma/
https://www.epa.gov/natural-gas-star-program/estimates-methane-emissions-segment-united-states
https://www.epa.gov/natural-gas-star-program/estimates-methane-emissions-segment-united-states


methane leak classification using an infrared camera”. En-
ergy, 238, p. 121516.

[12] Wang, J., 2019. “Automating the detection and classifica-
tion of methane pollution: Integrating deep learning and
techno-economic analysis”. Phd thesis, Stanford Univer-
sity. Available at https://www.proquest.com/openview/
07a9b2d8a2511a33d39a2aa8fa9bd428/1?pq-origsite=
gscholar&cbl=18750&diss=y.

[13] Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M.,
Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby, N., 2021.
“An image is worth 16x16 words: Transformers for image
recognition at scale”. arXiv.

[14] Wang, R., Veloso, M., and Seshan, S., 2016. “Active sensing
data collection with autonomous mobile robots”. In 2016
IEEE International Conference on Robotics and Automation
(ICRA), pp. 2583–2588.

[15] Ballari, D., de Bruin, S., and Bregt, A., 2012. “Value
of information and mobility constraints for sampling with
mobile sensors”. Computers Geosciences, 49, pp. 102–
111.

[16] Schmidt, K., Smith, R. C., Hite, J., Mattingly, J., Azmy, Y.,
Rajan, D., and Goldhahn, R., 2019. “Sequential optimal
positioning of mobile sensors using mutual information”.
STATISTICAL ANALYSIS AND DATA MINING.

[17] Liu, Y., Wang, S., Xie, Y., Xiong, T., and Wu, M., 2024.
A review of sensing technologies for indoor autonomous
mobile robots. doi.org/10.1177/1740774508098413F.

[18] Wu, J., Huang, Z., Guan, Y., Cai, C., Wang, Q., Xiao, Z.,
Zheng, Z., Zhang, H., and Zhang, X., 2011. “An intelligent
environmental monitoring system based on autonomous
mobile robot”. In 2011 IEEE International Conference on
Robotics and Biomimetics, pp. 138–143.

[19] Arain, M. A., Bennetts, V. H., Schaffernicht, E., and Lilien-
thal, A. J., 2021. “Sniffing out fugitive methane emissions:
autonomous remote gas inspection with a mobile robot”.
The International Journal of Robotics Research, 40(4-5),
pp. 782–814.

[20] Memarzadeh, M., and Pozzi, M., 2016. “Value of informa-
tion in sequential decision making: Component inspection,
permanent monitoring and system-level scheduling”. Re-
liab. Eng. Syst. Saf., 154, pp. 137–151.

[21] Malings, C., and Pozzi, M., 2016. “Value of informa-
tion for spatially distributed systems: Application to sensor
placement”. Reliability Engineering System Safety, 154,
pp. 219–233.

[22] Agogino, A., Jang, H. Y., Rao, V., Batra, R., Liao, F., Sood,
R., Fang, I., Hu, R. L., Shoichet-Bartus, E., and Matranga,
J., 2021. Dynamic placement of rapidly deployable mobile
sensor robots using machine learning and expected value of
information.

[23] Kulkarni, A., Jayaraman, V. K., and Kulkarni, B. D., 2005.
“Knowledge incorporated support vector machines to detect
faults in tennessee eastman process”. Computers & chemical
engineering, 29(10), pp. 2128–2133.

[24] Khan, A., Ceglarek, D., and Ni, J., 1998. “Sensor Location
Optimization for Fault Diagnosis in Multi-Fixture Assembly
Systems”. Journal of Manufacturing Science and Engineer-
ing, 120(4), 11, pp. 781–792.

[25] Chen, X., 2019. Tennessee eastman simulation dataset.
[26] He, K., Zhang, X., Ren, S., and Sun, J., 2015. Deep residual

learning for image recognition.
[27] Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang,

W., Weyand, T., Andreetto, M., and Adam, H., 2017. Mo-
bilenets: Efficient convolutional neural networks for mobile
vision applications.

[28] Hwang EE, Chen D, H. Y. J. L. S. J. “Multi-dataset compar-
ison of vision transformers and convolutional neural net-
works for detecting glaucomatous optic neuropathy from
fundus photographs”. Bioengineering (Basel), 10(11).

[29] Hammitt, J. K., and Shlyakhter, A. I., 1999. “The expected
value of information and the probability of surprise”. Risk
Analysis, 19(1), pp. 135–152.

[30] Choi, Y., Darwiche, A., and den Broeck, G. V., 2017. “Opti-
mal Feature Selection for Decision Robustness in Bayesian
Networks”. In Proceedings of the Twenty-Sixth Interna-
tional Joint Conference on Artificial Intelligence, ĲCAI-17,
pp. 1554–1560.

[31] Brennan, A., Kharroubi, S., O’Hagan, A., and Chilcott,
J., 2007. “Calculating partial expected value of perfect
information via monte carlo sampling algorithms”. Medical
Decision Making, 27(4), pp. 448–470. PMID: 17761960.

[32] Willan, A. R., 2008. “Optimal sample size determinations
from an industry perspective based on the expected value of
information”. Clinical Trials, 5(6), pp. 587–594. PMID:
19029207.

[33] Griffin, S., Welton, N. J., and Claxton, K., 2010. “Exploring
the research decision space: The expected value of infor-
mation for sequential research designs”. Medical Decision
Making, 30(2), pp. 155–162. PMID: 20040743.

[34] de Bruin, S., Ballari, D., and Bregt, A., 2012. “Multiphase
sensor placement using expected value of information”. In-
ternational Dairy Journal - INT DAIRY J, 01.

[35] Chick, S. E., Branke, J., and Schmidt, C., 2010. “Sequential
sampling to myopically maximize the expected value of
information”. INFORMS Journal on Computing, 22(1),
pp. 71–80.

[36] Mattera, C. G., Quevedo, J., Escobet, T., Shaker, H. R., and
Jradi, M., 2018. “A method for fault detection and diag-
nostics in ventilation units using virtual sensors”. Sensors,
18(11).

[37] Vantilborgh, V., Lefebvre, T., Eryilmaz, K., and Crevecoeur,
G., 2024. “Data-driven virtual sensing for probabilistic con-
dition monitoring of solenoid valves”. IEEE Transactions
on Automation Science and Engineering, 21(2), pp. 1297–
1311.

[38] Howard Raiffa, R. S., 1961. Applied statistical decision
theory. Harvard University Press, Boston, MA.

[39] James C. Felli, G. B. H., 1998. “Sensitivity analysis and the
expected value of perfect information”. Medical Decision
Making, 18, pp. 95––109.

10 Copyright © 2024 by ASME

 https://www.proquest.com/openview/07a9b2d8a2511a33d39a2aa8fa9bd428/1?pq-origsite=gscholar&cbl=18750&diss=y 
 https://www.proquest.com/openview/07a9b2d8a2511a33d39a2aa8fa9bd428/1?pq-origsite=gscholar&cbl=18750&diss=y 
 https://www.proquest.com/openview/07a9b2d8a2511a33d39a2aa8fa9bd428/1?pq-origsite=gscholar&cbl=18750&diss=y 

	1 Introduction
	2 Background and Related Work
	2.1 Sources of Methane Leaks in the Oil and Gas Industry
	2.2 Machine Learning for Methane Sensing
	2.3 Mobile Robots for Industrial Sensing Applications

	3 Methods and Approach
	3.1 Dataset and Data Pipeline
	3.2 AI / Machine Learning Models
	3.3 Expected Value of Information
	3.4 Development of a Virtual Sensor

	4 Results
	4.1 Performance Comparison Between Highest Performing ML Models
	4.2 Improved Accuracy with Contact Gas Sensor
	4.3 Results of Dynamic Sensor Placement and Location Analysis
	4.4 Example AI-Decision-Analytic Scenario

	5 Expected Value of Information
	6 Distinguishing Large Leaks from Small Leaks
	7 Conclusions and Future Research
	APPENDICES

