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Analysis of Collaborative
Design Networks: A Case
Study of OpenIDEO
This paper presents a large-scale empirical study of OpenIDEO, an online collaborative
design community. Using network analysis techniques, we describe the properties of this
collaborative design network and discuss how it differs from common models of network
formation seen in other social or technological networks. One major finding is that in
OpenIDEO’s social network the highly connected members talk more to less connected
members than each other—a behavior not commonly found in other social and collabora-
tive networks. We discuss how some of the interventions and incentives inherent in
OpenIDEO’s platform might cause this unique structure, and what advantages and disad-
vantages this structure has for coordinating distributed design teams. Specifically, its
core-periphery structure is robust to network changes, but is at risk of decreasing design
exploration ability if the core becomes too heavily clustered or loses efficiency. We dis-
cuss possible interventions that can prevent this outcome: encouraging core members to
collaborate with periphery nodes, and increasing the diversity of the user population.
[DOI: 10.1115/1.4026510]

1 The Rise of Distributed Design Communities

To solve increasingly complex design problems, companies are
beginning to look outside of their existing talent pool to absorb
and build off of ideas from distributed individuals or groups. This
practice is called different names by different groups, including
Open Innovation, Crowd-sourcing, and Crowd Design, among
others. It is practiced by a range of organizations, from large
global corporations (e.g., P&G’s ConnectþDevelop program2) all
the way down to small decentralized groups of individuals (the
Open Source Software movement). Internet technologies enable
regular people to cooperatively design better products, permitting
a powerful new kind of product development process.

To increase the effectiveness of these distributed teams, it
would be helpful to understand how they act differently than
traditional groups, and how existing design and management
practices need to be adapted to this new setting. This paper con-
tributes to that understanding through the use of network analysis
techniques. By comparing a real-world design network with prior
models of collaborative networks, this paper presents two main
contributions:

(1) An empirical network analysis of OpenIDEO, an online
design innovation network, which can act as a test bed for
models of design networks.

(2) A summary of key differences between observed behavior
and existing network models, with discussion on the impli-
cations for directing design practice.

Specifically, we explore the role of community structure
in OpenIDEO, explaining how some of its common network
properties predispose OpenIDEO to certain advantages and disad-
vantages when facilitating idea generation and collaboration. We
find that OpenIDEO’s social interactions center around a core of

users who communicate more frequently with members on the
periphery than among themselves (an uncommon disassortative
core-periphery social structure). This structure is more robust to
network changes than standard social networks—a good thing for
open innovation platforms in which participation is voluntary.
However, the central core structure also represents a risk to poten-
tial idea generation effectiveness: high clustering within the core
could precipitate design fixation on a small number of concepts as
a result of complex contagion (repeated exposure to the same
stimuli from multiple people) [1]. We discuss several possible
interventions that can prevent this effect, such as promoting col-
laboration between core and periphery members and increasing
diversity of participants.

This paper provides a brief introduction of current network
models and reviews previous studies of similar networks (e.g.,
Open Source Software networks, Co-Authorship networks.). It
then describes the OpenIDEO dataset and the network qualities
we studied, and presents our empirical results. Finally, it discusses
the implications of our results on design network models and man-
agement strategies for distributed design teams.

2 Prior Research on Network Structures

Despite the growing trend to use distributed design commun-
ities to crowd-source design tasks, there has been limited empiri-
cal study of the network properties of product or service design
communities themselves. This is due, in part, to the lack of non-
proprietary data, as well as the relatively recent emergence of
online design communities compared to communities in different
fields (e.g., software or social communication). A notable excep-
tion is Stephen et al. [2], who studied network effects of small,
experimentally controlled design teams. This paper extends that
line of work by studying large in-situ teams. To our knowledge,
this paper is the first to empirically study the collaboration prac-
tices of a distributed product or service design community that
operates outside of a single corporate entity.

This paper builds on prior work in three areas: (1) network
analysis techniques, (2) existing empirical studies of collaboration
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networks, and (3) existing theoretical models of design networks.
These three aspects provide the background necessary to discuss
the main results of our study, which center around the network
properties of OpenIDEO and its effects on ideation.

2.1 Background on Network Analysis Techniques. Net-
work Analysis is a class of mathematical techniques that can be
used to study particular types of complex phenomena. Its primary
assumption is that a phenomenon can be reasonably modeled as a
mathematical graph consisting of nodes (or vertices) connected to
each other by links (or edges). For example, in a social network
such as Facebook, a node might be a person, a link might be the
strength of a relationship, and the phenomena of interest might
be how a viral video propagates among people over time. By
representing phenomena as graphs, network analysis can adapt
measures from graph theory in order to explain or predict certain
behaviors, ranging from disease transmission to co-authorship to
protein interactions. A full summary of these techniques is
beyond the scope of the paper, but interested readers are directed
to Refs. [3] and [4].

The most critical assumption in any network analysis study
comes from how the network nodes and links are defined. How-
ever, once the nodes and links have been defined, one can
compare several graph properties, both on a global (whole net-
work) level and at a local (node-centric) level, which provide
insight into the behavior of the network. For example, graph
properties can be used to predict qualities like the social power of
individuals, weak-points in information flow within networks, or
the likelihood of co-authorship between researchers.

Our goal in this paper is to investigate several network proper-
ties that have implications on the ability to share and build off of
information present in a design collaboration network. We first
define some commonly used terms from Network Analysis that
help clarify our later explanations:

Link (also called an edge) is a connection between two nodes
on the graph. It can have a direction as well as a weight
(e.g., A sent B ten emails).

Size is the total number of nodes in a graph.
Diameter is the length of the shortest path between the two far-

thest nodes in the graph. It provides a sense of how spread
out the graph is and provides one measure of the resistance
to the flow of information.

Connected Component is a subset of the nodes in a graph that
can be reached by following links between them. For exam-
ple, if two nodes are connected to each other, but not to any
other nodes, then they form their own connected component.
Real-world networks tend to have one large connected com-
ponent which contains most of the nodes (e.g., the center
component of Fig. 1(d) contains around 95% of the nodes),
followed by some smaller components with only a few
nodes each (e.g., the single nodes on the outside of
Fig. 1(d)).

Density is the ratio between the number of links that exist
between nodes and the maximum number of possible links
that could exist (i.e., a complete graph). In large real-world
networks, the density is typically low.

Clustering Coefficient is a measure of how tightly connected
nodes are in a graph, specifically measuring the ratio of
number of triangles between a node and any two neighbors
and the number of possible triangles (e.g., how many of
your friends are also friends with each other) [3]. Node-wise
clustering coefficients can be averaged to characterize how
clustered a graph is as a whole [3].

Centralization refers to how well the graph is centered around a
single focal point on a scale from zero to one. High central-
ization would imply a deeply hierarchical structure, such as
a star graph (Fig. 1(a)), while low centralization would
imply that all nodes are equally central, such as a cycle
graph (Fig. 1(c)).

Efficiency measures how easily and quickly information is
transferred across a network. It is inversely related to the
average shortest path length required to go between all pairs
of nodes on the graph; if efficiency is high, all nodes are
within a few links of one another, and if efficiency is zero
then no node can communicate with any other node.

Degree of a node measures the number of incoming and out-
going links to that node. For example, in Fig. 1(c), node one
has a degree of four because it connects to four other nodes.

Degree Distribution refers to the fact that different nodes have
different degrees. The distribution of these degrees follows
different patterns depending on the type of network struc-
ture. In many real-world networks, this distribution is
power-law distributed (or scale-free), which means that it
exhibits a relatively linear plot when plotted log–log scaled,
as in Fig. 3. This corresponds to many nodes having only a
few links, and only a few nodes having many links.

Assortativity or assortative mixing, is the propensity for nodes
in a network to create links with similar nodes, and to avoid
creating links with dissimilar nodes. For example, engineers
might be more likely to be friends with other engineers than
with dentists, and vice versa. Degree Assortativity means
that nodes with high degree (those who communicate with
many people) are more likely to communicate with other
nodes with high degree, instead of nodes with low degree
(those who communicate infrequently). Social networks are
known for being positively degree assortative.

k-Clique is a set of k nodes that are all connected to one another
(i.e., they form a complete sub-graph). For example, if A
knows B and C, and B also knows C, then A, B, and C are a
3-clique. We study these cliques in Sec. 3.3 to address com-
munity structure in OpenIDEO.

We return to several of the above network properties in Sec. 3,
when we address how each of them determines the advantages

Fig. 1 Directed links are represented by a thicker segment
indicating the direction (e.g., in (c) 2 points to 3, and 3 points to
4). (b) is a concept graph, where red nodes represent inspira-
tions and the green nodes represent concepts. (d) is a social
graph, where redder nodes indicate more comments are
received than given, whereas bluer indicates the opposite. In
both cases, the size of the nodes represents the degree (num-
ber of incoming and outgoing links) of the node.
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and disadvantages of the OpenIDEO network for idea generation
and collaboration.

2.2 Empirical Findings From Other Fields. We review
prior studies of three types of networks: (1) Open Source
Software, (2) research co-authorship, and (3) social communi-
cation. We pick these three since they each have elements you
would expect to find in a collaborative design network, and
therefore serve as a meaningful basis on which to benchmark
OpenIDEO.

Open Source Software is similar to open design networks in
that the members are typically decentralized, can choose which
projects they want to work on, and are creating some artifact
that will be used by people. This type of network study is the
closest existing example to the work that we are presenting,
though it is different in both the kind of project as well as the
specific mechanisms of collaboration. In most studies of Open
Source Software, the node unit of analysis is a particular devel-
oper and a link exists between developers if they have worked
on the same project together [5]. These networks display high
assortativity and often generate many smaller communities, par-
ticularly around programming languages. They possess standard
power-law distributed degree distributions that are typical of
many social networks [6].

Research co-authorship is another type of network where there
is formal interaction and the goal is to generate new ideas in
collaboration with others. It differs from OpenIDEO in that the
barriers to collaboration in OpenIDEOs case are smaller than
for research co-authorship, and the online social interactions in
OpenIDEO are traceable in a way that is not feasible in research
networks. Co-authorship networks are also positively assortative,
tend to form communities within the larger network, and have a
low average clustering coefficient [3].

Social networks, such as social media or email networks, are
similar to online design networks in that a traceable process of
social communication occurs between participants, and because
OpenIDEO’s user population is situated in a social community.
Social networks tend to be highly positively assortative with
multiple smaller communities of people interacting together
[3,7,8]. They also tend to possess power-law distributed degree
distributions.

2.3 Theoretical Models for Design Networks. While there
has been limited empirical work on actual design networks,
prior research has proposed different theoretical models for how
design networks might operate. The vast majority of available
theoretical models for collaborative design networks are either
simulation studies using agents with predefined collaboration
rules, or are optimization studies which fit common theoretical
network models, such as Preferential Attachment models [3,
Chap. 14.1], to data from almost exclusively Open Source Soft-
ware communities.

Agent-based simulations typically define a computational
model of a product, and then create a series of software agents
who can choose what portion of the product to work on. These
simulations then track the product and communication between
the agents, building a simulated collaboration network that can
then be analyzed for structural properties [9–11]. The typical
applications for this line of work are in identifying potential strat-
egies for managing complex system design, under the assumption
that the agents behave similarly to real people.

In contrast, network optimization studies attempt to take real
network data and fit theoretical network models to that data [12].
The key assumption behind this line of work is that if real net-
works obey certain properties, such as power-law distributions,
one should be able to determine those parameters by matching the
theoretical model to the data. Upon doing so, insights are often
gained about why the network does or does not conform to theo-
retical expectations.

3 Analysis of OpenIDEO Design Network

We chose OpenIDEO from among other possible online
design collaboration platforms (e.g., Napkin Labs, frogMob,
VehicleForge, etc.) due to the breadth of project types, the large
user community, and availability of collaboration meta-data (such
as explicit links between concept ideas). To understand both the
general properties of the OpenIDEO network as well as the prop-
erties of any sub-communities, we divided our analysis into three
parts: (1) Structural measures that address information flow within
the network; (2) Community measures that address the network’s
robustness and community structure; and (3) Effects of certain
members that address the specific role of possible OpenIDEO
interventions.

3.1 Data Collection and Pre-processing. We collected data
from 22 OpenIDEO challenges that were complete at the time of
writing3. Most design challenges start with a question, for exam-
ple “How might we restore vibrancy in cities and regions facing
economic decline?” Each challenge consists of a series of sequen-
tial phases: Inspiration, Concepting, Applause, Evaluation, Selec-
tion of Winners, and Realization. During Inspiration, contributors
can submit “insights, examples, stories, or comments”4 designed
to provoke possible solutions from the community. During Con-
cepting, contributors submit concepts designed to solve the chal-
lenge. Inspirations and concepts are typically a few paragraphs
long with accompanying figures.

In either stage, contributors can link to other people’s inspira-
tions or concepts by clicking a “build off of this idea” button in
the web interface. This creates an explicit link that we use to
model interrelations between the submissions: we construct a
graph (using the NetworkX library [13]) where nodes represent a
submission in the particular design challenge, and we add a
directed link from node A to B if concept B builds upon concept
A (e.g., Fig. 1). We refer to this as the concept graph. We created
separate concept graphs for each of the 22 challenges.

During all stages of the challenge, people may post comments
on other people’s concepts as well as reply to comments on their
own concepts. To model this social interaction, we construct a
separate graph (the social graph) where each node represents an
OpenIDEO user, and a weighted directed link is added from user
A to user B if user A comments on user B’s concept for that par-
ticular design challenge or if user A replies to a comment given
by user B. Every additional interaction from A to B adds an
additional unit of weight to the link between A and B. There are
separate social graphs for each of the 22 challenges. There are
particular users, who we refer to as OpenIDEO community man-
agers, who have specific roles on the platform: they help facilitate
the challenge by reaching out to many concepts and commenting
on them to promote interaction. There are usually two of these
managers per challenge, one who is a member of IDEO staff and
another who is an active member of the larger community.

3.2 Structural Measures. The measures in this section are
designed primarily to address the ease with which information
flows through each network. Greater size and diameter imply that
information has farther to travel, while greater clustering, central-
ization, efficiency, and density imply greater ease of information
transfer.

Comparing the concept and social graphs across challenges
reveals certain key structural similarities and differences: Despite
similar network sizes, the two networks have drastically different
link structures, diameters, densities, and average clustering.
Figures 1(b) and 1(d) illustrate representative concept and social
graphs, respectively, positioned using a Fruchterman–Reingold
force directed layout algorithm; immediate inspection reveals
the tightly clustered core-periphery structure of the social graph

3http://www.openideo.com/open
4http://www.openideo.com/how-it-works/full.html
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(Fig. 1(d)) as well as the sparser, more community clustered con-
cept graph (Fig. 1(b)). To make the differences between these
structures clearer, Fig. 2 highlights several key similarities and
differences.

Size: Within each challenge, both the concept and social graphs
have approximately between 200 and 800 nodes, with two concept
graphs reaching into the low 1000 s—these sizes are fairly small
compared to social internet communication networks, but large
compared to the size of typical collaborative design groups
(Fig. 2(a)). Particularly for the concept graphs, this size indicates
that it would be time-prohibitive for any individual to actually
read through all available ideas in a challenge.

Diameter: Since both types of networks in OpenIDEO have dis-
connected components (thus infinite graph diameters), it is more
reasonable to measure the diameter of the largest connected com-
ponent of the graph (Fig. 2(b)). For that case, OpenIDEO’s social
graph has a significantly smaller component diameter than that of
the concept graph, despite their being of roughly equal size. Part
of the reason for this smaller diameter is the fairly efficient center
of the social graph (Fig. 1(d)) which bridges many nodes, decreas-
ing the distance information needs to travel and making communi-
cation and feedback easier to transmit.

It is notable, though not unexpected, that both the concept and
social graph have disconnected components. This indicates that
there are concepts that are never being built off of and users who
are not participating in the social community, both of which are
losses of potential information.

Density: The social graph is about four times as dense as the
concept graph—most people who help out with the challenge
interact at least once, whereas, on average, 42% of the inspirations
or concepts that get submitted are never built off of (or at least

tagged as such on the website) (Fig. 2(c)). The concept graph’s
low density is possibly due to the shear number of available con-
cepts or the effort required building off of an idea.

Average Clustering Coefficient: As expected, the sparsely con-
nected and spread out concept graph has low average clustering,
while the social graph has higher clustering, roughly comparable
to other social networks (Fig. 2(d)).

Centralization: Demonstrates that both the concept graphs and
social graphs are decentralized, with the concept graphs having
significantly less centralization (Fig. 2(e)). Both of these results
match what you would expect from an open innovation platform:
many users should have access to different parts of the graph in
order to have exposure to diverse groups of ideas and people. Part
of the increased centralization in the social graph comes from the
presence of the OpenIDEO community managers who are well
connected to many members of the social community—a point we
explore more in Sec. 3.4.

Efficiency: Illustrates the global network efficiency of both the
concept and social graph (Fig. 2(f)). The low efficiencies in the
graphs come with both advantages and disadvantages: on the one
hand, lower efficiencies mean higher network redundancy and
robustness at a given density—the concept graph has both low
density and low efficiency, so it doesn’t gain the redundancy ben-
efit, while the social graph’s central core structure does. However,
at a given density, higher efficiencies create better information
transfer across the network and also correlate to lower cluster-
ing—this is a useful structure when groups of people have to col-
laboratively solve uncertain problems together without getting
stuck [1]. We will return to these ramifications in Sec. 4 once we
discuss the role that community structure plays in these two types
of networks.

Fig. 2 The concept graphs have higher diameter (b) and lower density (c) than the social
graphs, despite roughly equivalent network sizes (a). This is possible due to small levels of
clustering within the concept graph, and the fact that the social graph has certain mechanisms
built in that reduce the graph diameter (see Sec. 4). The concept graph exhibits low centraliza-
tion (e) and low global efficiency (f), while the social graph exhibits medium centralization and
low efficiency. In both cases, higher efficiency would be more advantageous in order to ease
transfer of ideas and feedback, respectively. Figure 1 provides some visual intuition behind
these results.
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3.3 Community Measures. To understand the type of com-
munity structures inherent in the OpenIDEO network, we
conducted three types of analysis: (1) degree distribution, (2)
assortativity, and (3) community detection using the k-clique per-
colation method [14]. The results were unexpectedly different
than other networks of their type: the social graph is highly disas-
sortative with only a single, large core structure, while the concept
graph has many small communities. For the social graph, this
unique structure gives it higher robustness under node removal
than standard social networks, and its disassortativity likely helps
it maintain that structure—both of these are advantageous proper-
ties for an open innovation network where participation is
voluntary.

Degree Distribution: Both the concept and social graphs appear
power-law distributed, due to the linear nature of the degree distri-
butions in Fig. 3. In terms of robustness, power-law distributed
networks are robust (i.e., do not change much) under random node
removal (i.e., random people leaving the network), but are partic-
ularly susceptible to targeted node removal (i.e., removing the
highest degree or most important individuals) [3]. However, as we
demonstrate below, OpenIDEO possesses a core-periphery struc-
ture that mitigates this robustness concern [15,16]; even removing
several of OpenIDEO’s highest degree members (the OpenIDEO
community managers) does not significantly alter the network
properties.

Assortativity: One possible reason for the social graph’s robust
core-periphery structure lies in the network’s lack of assortativity
(Fig. 4). Figure 4 compares the assortativity of the OpenIDEO
concept and social graphs, where assortativity ranges from 1
(completely assortative) to� 1 (completely disassortative).

Unlike other social networks, the OpenIDEO social graph
is actually disassortative, meaning that those members who

communicate frequently are actually communicating more often
with infrequent members of the group rather than frequent mem-
bers, and vice versa. Indeed the directed links in Fig. 1(d) display
a balance between outsiders commenting on concepts generated
by members within the core, as well as core members reaching
out to those on the periphery.

We hypothesize that this is one of the reasons for the disassorta-
tive, core-periphery structure seen in the social graph. Other
possible reasons include: OpenIDEO’s reputation system, which
awards “collaboration points” for commenting with other people’s
concepts; community managers who reach out to less active users;

Fig. 4 Unlike most social networks, the OpenIDEO social
graph appears negatively assortative (disassortative) by
degree, rather than positively assortative. This means that
members with high degree (lots of communication) talk more
with those with low degree, rather than with others of high
degree. This style of communication is highly atypical of most
social networks. It reduces the diameter of the network and
increases the fraction of the members in the largest graph com-
ponent. The concept graph appears neither assortative nor
disassortative.

Fig. 5 Boxplots of the number of communities detected using
the k-Clique Percolation Method, for different values of k in
both the concept (a) and social graphs (b) [14]. The concept
graphs have a high number of small communities, while the
social graphs have only a few communities that are signifi-
cantly more connected. This reinforces the visual data in.

Fig. 3 Degree complementary cumulative distribution func-
tions for the largest connected component of different types
of Open IDEO networks. Each line corresponds to a different
challenge. Both types of networks are generally power-law
distributed.
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specific stages of the design process for commenting, viewing,
and evaluating the work of others; and soft incentives from IDEO
that reward active users through possible job opportunities within
the larger company.

While these features undoubtedly improve participation, collab-
oration, and disassortativity, they may not be present in other
design networks. We encourage this behavior as a means to
increase network efficiency, decrease clustering, and improve idea
generation—a recommendation we return to in Sec. 4.

k-Clique Percolation: To uncover any possible community
structures, we used the Clique Percolation Method [17] to detect
communities of different sizes and overlap (Figs. 5 and 6). This
approach constructs k-cliques and then merges k-cliques together
if they share k� 1 nodes in common, identifying larger commun-
ities. For example, a 2-clique would be any 2 connected node pair,
and a 2-clique community would merge any pairs which shared at
least 1 node in common—this special case would be the same as
finding the connected components of the graph. By increasing k,
you can uncover increasingly connected communities within the
graph.

Figure 5 compares the number of k-clique communities for
each type of graph as k is increased. The concept graph contains
many 3 and 4-clique communities, but none larger than 5. The
social graph contains, on average, 1–2 communities, but becomes
a well-connected central community as k increases.

To characterize what these communities look like, Fig. 6 plots
a representative example from challenge 10 that compares the
identified k-clique communities as k is increased. In the concept
graph, as k increases we see several mostly non-overlapping com-
munities form throughout different parts of the graph—this dem-
onstrates patches of interrelation between small collections of
different concepts. In contrast, the social graph starts with a large,
central community incorporating most of the network core. As k

increases, the core remains, decreasing somewhat in size. Any
new communities that form have substantial overlap with the
existing central core, rather than forming on a different portion of
the graph—this is again consistent with the notion of the social
graph maintaining a core-periphery structure.

We conducted an additional verification of these results using a
different method proposed by Sarkar and Dong [7]; however, the
conclusions were the same so we omitted the results in the interest
of space. Interested readers are welcome to download supplemen-
tal results of additional analyses.5

3.4 Effect of OpenIDEO Community Managers. One
hypothesis for some of the observed behavior is that the OpenI-
DEO community managers could be purposefully acting within
the network to produce these structures, and that removing them
from the graph would better resemble a standard social network
model. To test this hypothesis, we removed those users, and any
of their links, from the social graphs across all challenges and
re-ran all of our above analyses. Almost all of our results remain
unchanged.

Figure 7 compares the two most substantive changes:
(Fig. 7(a)) demonstrates that removing the OpenIDEO community
managers increases the assortativity of the social graph, though it
still remains significantly disassortative; (Fig. 7(b)) demonstrates
that the centralization of the network decreases substantially.
Given that the role of the OpenIDEO community managers is to
reach out and involve different members, it is not surprising that
their actions change both assortativity and centralization. What is
surprising is that, even devoid of the community managers’ com-
ments, OpenIDEO’s social graph remains disassortative and still

Fig. 6 Visualizing the communities created using the k-Clique Percolation Method, for different values of k in both the social
and concept graphs [14]. This uses the networks from challenge 10 as a representative example. Colored sub-graphs represent
nodes within a given community, and red nodes represent nodes in multiple communities. For the concept graphs (a)–(c), mul-
tiple, non-overlapping communities are present at different community scales (k 5 [3,5]). However, for the social graphs there
is generally only a single core community—any additional communities tend to be heavily overlapping (e.g., the red nodes in
(f).

5http://www.markfuge.com/openideo
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somewhat centralized. We discuss possible cause and implications
of this next.

4 Implications for Design Practice and Research

Our interpretations of these results fall into two categories:
implications for operators of design collaboration networks and
implications for theoretical models of design networks.

4.1 Implications for Operators of Design Collaboration
Networks

4.1.1 Low Efficiency and High Diameter Reduce Information
Flow in the Concept Graphs: Since concept nodes represent
ideas and links represent information flow in the form of build-
ing off of ideas, the way concept graphs are evolving into dis-
tributed, low efficiency networks leads to a couple of possible
conjectures: (1) the vast majority of concepts lack useful infor-
mation, and thus are not worth building off of; (2) it is difficult
to find and connect disparate concepts, leading to only minor
local clustering and limited global structure; or (3) the time
frame or format of concept submission is such that it does not
provide sufficient time to review, connect, and cycle through
iterations of concepts on the network.

Addressing (1) is outside of our scope, but (2) and (3) could be
addressed by employing many of the techniques we have used in
our network analysis: locating ideas from distance parts of the
graph to present to participants as possible idea “mash-ups” or
using community detection techniques to identify or create com-
mon idea groupings.

4.1.2 Incentivizing Core-Periphery Social Structures
Increases Robustness, Centralization, and Efficiency: While the
core-periphery social structure was different than expected, it car-
ries with it several advantages and trade-offs that help make the
design network more robust and stable:

(1) Core-periphery networks are more robust to random or
targeted node loss than other power-law distributed net-
work types of similar efficiency [3,15,16]. This is good
since open innovation networks are reliant on voluntary
participation by individual nodes, any of which could stop
participating at any moment.

(2) The core-periphery structure is conducive to high central-
ization and network efficiency, which helps transfer infor-
mation among collaborators.

(3) The disassortative mixing creates an inclusive environment
for periphery users to get involved and move towards the
core.

As a proactive strategy for strengthening design networks, we
recommend incentivizing disassortative behavior by asking high-
degree core members to comment or collaborate with periphery
members more regularly (a practice currently employed by the
OpenIDEO community managers).

4.1.3 However, A Highly Clustered Central Core May Harm
Ideation Potential. The primary concern with highly clustered
core networks is that, when used to communicate ideas or con-
cepts, it may impede idea generation. Highly clustered, inefficient
networks facilitate forms of complex contagion, or multiple
repeated exposures that can cause people to prematurely cease
exploring ideas [1]. Essentially, if all your neighbors are exploring
similar ideas, you are more likely to produce something similar to
that idea—fixating on it in place of exploring other options. In a
highly clustered network this effect feeds on itself since many
people have common neighbors, creating false confidence about
the strength of an idea and premature fixation on a portion of the
design space.

Therein lies the double-edged sword of using a core-periphery
structure as a base for a design network: it can enable a robust,
self-sustaining, efficient collaboration network, but if the network
becomes too clustered it can result in premature design fixation
and lack of exploration (“groupthink,” essentially). We recom-
mend the following countervailing measures that maintain struc-
ture and increase the efficiency of the network while reducing
clustering:

(1) Encourage core nodes to collaborate with periphery
nodes—this increases disassortativity and efficiency, and
lowers clustering.

(2) Expand the diversity of the contributors—this improves the
overall diversity and quality of sets of ideas being dis-
cussed, regardless of network structure.

(3) Encourage the idea generation practice of first doing indi-
vidual ideation before viewing the ideas of others—this
limits initial exposure to potentially fixating ideas, after
which members can take better advantage of the core-
periphery network regardless of its efficiency or clustering.

(4) Encourage building off of ideas from different parts of the
concept graph—this creates better efficiency within the
concept graph and has the potential to combine distinct fea-
tures from different parts or “idea communities” within the
concept graph.

4.2 Implications for Theoretical Models of Design
Networks

4.2.1 Consider Explicitly Modeling Disassortativity in
Collaboration Networks. The disassortative nature of the collabo-
ration social graph is non-standard in current social collaboration
models, and does not appear in datasets from nearby domains like
Open Source Software. We would encourage those working on
theoretical or simulation models of design team collaboration to
consider including disassortativity characteristics as part of their
modeling strategy.

4.2.2 We Need Better Understanding and Models of
Core-Periphery Structures. Research in core-periphery structures
is still an active area of research [15,16]—there is much to be
gained by collaborating with other researchers working in network
analysis. As an example, we presented an initial exploration of the
role of the community managers in Sec. 3.4—much more work
could be done to explore the possibilities for network

Fig. 7 Removing OpenIDEO community managers from the
social graph (“Social w/o CM”), we see some noticeable, but
small changes: the centralization of the network decreases and
the assortativity increases. The general behaviors we described
above are unlikely to be caused exclusively by existing OpenI-
DEO community managers.
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interventions in design collaborations. A natural extension of this
work would be exploring the structural effect of pairing new pe-
riphery members with existing core members or recommending
concepts from different parts of the concept graph.

5 Conclusion

This paper presented an empirical study of OpenIDEO, a real-
world design innovation network. Through the use of network
analysis techniques, we found that OpenIDEO’s social graph is
disassortative and lacks the multiple community structure found
in typical social networks. Instead, the graph contains a moder-
ately centralized core-periphery structure that is robust to network
attacks. This could be caused by multiple factors, including: size,
presence of community member leads, and collaboration incen-
tives, though further study would be necessary to determine causal
relationships.

While the efficiency and robustness benefits of the social
graphs’ structure are advantageous, there is the possibility for
design fixation through complex contagion if the core network
becomes too clustered. We discussed possible counter-strategies
including increased community involvement with periphery nodes
and increased participant diversity. We also addressed how these
structures might impact theoretical models of design networks,
specifically the need to model disassortative collaboration behav-
ior and core-periphery structures.

Moreover, this work raises several new questions for future
investigation: At what point do transitions occur between single
and multi community network structures? How do these design
structures change over time, as people begin to develop reputa-
tions within the community? How do you balance network effi-
ciency with the desire to help members exploit the good ideas of
others? By using network analysis techniques to better understand
their structure and operation, this paper helps further the potential
of online communities, by providing insight into what types of
behavior make them sustainable and effective.
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