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Abstract—Unscheduled or reactive maintenance on wind tur-
bines due to component failures incurs significant downtime and,
in turn, loss of revenue. To this end, it is important to be
able to perform maintenance before it’s needed. By continuously
monitoring turbine health, it is possible to detect incipient faults
and schedule maintenance as needed, negating the need for
unnecessary periodic checks. To date, a strong effort has been
applied to developing Condition Monitoring Systems (CMSs)
which rely on retrofitting expensive vibration or oil analysis
sensors to the turbine. Instead, by performing complex analysis
of existing data from the turbine’s Supervisory Control and
Data Acquisition (SCADA) system, valuable insights into turbine
performance can be obtained at a much lower cost.

In this paper, data is obtained from the SCADA system of
a turbine in the South-East of Ireland. Fault and alarm data
is filtered and analysed in conjunction with the power curve to
identify periods of nominal and fault operation. Classification
techniques are then applied to recognise fault and fault-free
operation by taking into account other SCADA data such as
temperature, pitch and rotor data. This is then extended to allow
prediction and diagnosis in advance of specific faults. Results are
provided which show success in predicting some types of faults.

Index Terms—SCADA Data, Wind Turbine, Fault Detection,
SVM, FDD

I. INTRODUCTION

In order to reach the binding target of sourcing 16% of
its annual energy use from renewables by 2020 under the
EU Renewable Energy Directive, 40% of Ireland’s electricity
needs to come from renewable sources. Ireland has one of
the best wind resources in Europe, as well as a mature wind
energy industry. For this reason, it is expected that the vast
majority of this target will be met by wind energy [1].

Wind turbines see highly irregular loads due to varied and
turbulent wind conditions, and so components can undergo
high stress throughout their lifetime compared with other rotat-
ing machines [3]. Because of this, operations and maintenance
account for up to 30% of the cost of generation of wind
power [4]. The ability to remotely monitor component health
is even more important in the wind industry than in others;
wind turbines are often deployed to operate autonomously in
remote sites so periodic visual inspections can be impractical.

Unexpected failures on a wind turbine can be very expensive
- corrective maintenance can take up a significant portion of a
turbine’s annual maintenance budget. Scheduled preventative
maintenance, whereby inspections and maintenance are carried
out on a periodic basis, can help prevent this. However, this can
still incur some unnecessary costs - the components’ lifetimes
may not be fully exhausted at time of replacement/repair,
and the costs associated with more frequent downtime for
inspection can run quite high. Condition-based maintenance
(CBM) is a strategy whereby the condition of the equipment
is actively monitored to detect impending or incipient faults,
allowing an effective maintenance decision to be made as
needed. This strategy can save up to 20-25% of maintenance
costs vs. scheduled maintenance of wind turbines [5]. CBM
can also allow prognostic analysis, whereby the remaining
useful life (RUL) of a component is estimated. This can allow
even more granular planning for maintenance actions.

Condition monitoring systems (CMSs) on wind turbines
typically consist of vibration-sensors, sometimes in combi-
nation with optical strain gauges or oil particle counters,
which are retrofitted to turbine sub-assemblies for highly
localised monitoring. This data is sent to a central data
processing platform where it is analysed using proprietary
software and, if an incipient fault is detected, an alarm is
raised [6]. However, CBM and prognostic technologies have
not been taken up extensively by the wind industry, despite
their supposed benefits [5]. A number of reasons exist for this
[7], [8]. The capital cost of retrofitting sensors, as well as data
collection and analysis can be quite high - upwards of AC13,000
per turbine. Although CMSs have been widely successful
in other applications, commercial wind turbine CMSs have
not performed as well as hoped due to inherent uncertainties
and inaccuracies with some CM techniques. This has led to
false alarms, which can be very costly due to the downtime
and manual inspections needed. More worryingly, in some
cases they have not demonstrated satisfactory performance in
detecting incipient faults. This can lead to catastrophic failure
of components and related assemblies if maintenance is not
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Fig. 1. Normalised failure rates of sub-systems and assemblies for all turbines surveyed [2]

performed in time.

Whereas the aim of wind turbine CMSs is to provide
detailed prognostics on turbine sub-assemblies through fitting
additional sensors, there already exist a number of sensors
on the turbine related to the Supervisory Control and Data
Acquisition (SCADA) system. In recent years, there has
been a concerted effort to apply CM techniques to wind
turbines by analysing data collected by the SCADA system.
SCADA data is typically recorded at 10-minute intervals to
reduce transmitted data bandwidth and storage, and includes
a plethora of measurements such as active and reactive power,
generator current and voltages, anemometer measured wind
speed, generator shaft speed, generator, gearbox and nacelle
temperatures, and others [3]. By performing statistical analyses
on various trends within this data, it is possible to detect when
the turbine is entering a time of sub-optimal performance or
if a fault is developing. This is all done without the added
costs of retrofitting additional sensors to the turbine [7]. There
have been many different approaches to using SCADA for
turbine fault detection and prediction, which we review in the
following section.

In this paper, we use data from a coastal site in the South
of Ireland where a 3 MW turbine has been installed at a
large biomedical device manufacturing facility to offset energy
costs. In Section II, we describe how a wind turbine’s power
curve and other SCADA data can be used for fault detection
through performance monitoring, and give a brief review of
methods used in the past. In Section III, we describe the
turbine site and the data we use. In Section IV we describe
the model used for detecting, diagnosing and predicting faults,
and the results obtained. Finally, in Section V we evaluate the

performance of our model against previous methods used in
the literature, both in terms of accuracy and effectiveness at
predicting faults.

II. REVIEW OF SCADA BASED CM SYSTEMS

A. Wind Turbine Failure Modes

Fig. 1 shows the results of a Failure Mode Effects Analysis
(FMEA) for wind turbines, after an extensive and detailed
survey of the frequency of different failure modes on turbine
components and sub-assemblies and their contribution to down
time. As can be seen, the biggest contribution to the overall
failure rate was the power system. This translated to just
below a 40% contribution to overall downtime on the turbines
surveyed. This data comes from a study by the EU FP7
ReliaWind project, undertaken by a consortium of stakeholders
from the wind industry, technology experts and academia [2].

B. Power Curve

The relationship between power and wind speed for a
specific turbine can be seen in Fig. 2 (a). This graph is
known as a power curve, and shows the turbine’s power output
as a function of hub height wind speed. A turbine’s power
curve is an important metric when determining wind turbine
performance. Different turbine models will have different
power curves according to the operating conditions they have
been designed for — typically, a certain range of wind speeds.
The performance of a turbine under different wind speeds can
be related to three key points on this graph [9]. uc, the cut-
in speed, is the minimum useful wind speed at which the
turbine begins to generate power. ur, the rated speed, is the
speed at which maximum rated generator output is obtained.
us, the cut-out speed, is the maximum speed at which the



turbine can produce power. This is limited by engineering and
safety constraints, however some turbine models allow limited
power output above this through smart control of the blade
pitch angle. The power curve for a particular turbine model is
usually given by the manufacturer as a guaranteed performance
metric [10].

Comparing the generated power of a turbine at a given wind
speed to the supplied power curve is an important way of
checking if a turbine is performing correctly. However, the
manufacturer typically develops this power curve according
to standard guidelines, e.g., IEC 61400-12-1 [11]. They are
also developed under standard conditions, using a specific
methodology that is impractical to reproduce at an operating
wind farm [12]. In practice, turbines are often placed on sites
with varying topography and wind conditions, so any deviation
from the manufacturer’s power curve could be due to a number
of environmental variables as opposed to indicating a problem
in the turbine itself [13], [9]. By using data obtained from
when a particular turbine was in fault-free optimal operation,
a new power curve can be modelled and used as a visual
reference for monitoring future performance. Because the
topography and wind conditions at a specific site will remain
largely the same over a given period of time, any changes in
the characteristic shape of the power curve can be put down
to changes in the turbine itself, and visually diagnosed by an
expert as the cause of a specific incipient fault. An example
of this is seen in Fig. 2 (b). The characteristic shape of this
power curve can be attributed by an expert to curtailed power
output due to faulty controller values [14].

C. Review of SCADA-based CM systems

Many attempts have been made in the past to automate
the diagnostic process through use of statistical and artificial
intelligence methods. A number of approaches model the
power curve under normal operating conditions. This is then
compared to the on-line values and a cumulative residual
is developed over time. As the residual exceeds a certain
threshold, it is indicative of a problem on the turbine. Gill
et. al model the power curve under normal conditions using
copula statistics, and demonstrate that a deviation from this
could possibly be used in future to give an indication of a

Fig. 2. Wind turbine power curve under (a) optimal operation and (b) faulty
controller values

developing fault [10]. Skrimpas et. al use kernel methods to
model the power curve and deviations from this correspond to
periods of poor turbine performance due to controller errors,
icing, power de-rating and operation in noise reduction mode
[15]. However, the method does not differentiate between these
faults. Butler et. al [16] performed a similar analysis, using
Gaussian Process models to model the power curve. They
were able to successfully show a performance degradation
which began three months in advance of a main bearing
failure on the turbine. Again, however, this method did not
provide diagnostic capabilities. In [17], a novel algorithm is
developed for modelling the power curve. The average power
output at various different wind speed “bins” is found. A
provisional power curve is then built by interpolating between
these points. Next, optimal bounds are developed by shifting
this curve up and down by varying degrees. All points outside
these bounds are filtered out, and the process repeats itself
until a satisfactory model representing nominal operation is
found. Smart alarm limits were then developed to detect future
anomalous behaviour. This method showed an indication of
faulty operation, but did not diagnose a specific fault.

An expansion on the above methods is to use performance
indicators other than the power curve. Lapira et. al trained
a neural network which included additional parameters such
as nacelle temperature, rotor speed, gearbox oil temperature
and generator bearing temperature. Their model successfully
demonstrated performance degradation leading up to a fault
[14]. Another study performed performance monitoring using
wind speed trended against power output, rotor speed and
blade pitch angle. This gave a good performance metric for the
turbine but fault diagnosis was not part of this study’s scope
[18].

By using a much wider spectrum of SCADA parameters,
fault classification and limited fault prediction has been suc-
cessfully demonstrated by Kusiak et. al [19]. A number of
models, comprising of neural networks, boosting trees, support
vector machines and standard classification regression trees,
were built to evaluate their performance in predicting and
diagnosing faults. It was found that prediction of a specific
fault, a diverter malfunction, was possible at 67% accuracy
and 73% specificity 30 minutes in advance. Unfortunately,
when this was extended out to one hour in advance, accuracy
and specificity fell to 40% and 24%, respectively. Overall,
it was found that the most successful algorithm for specific
fault detection was the boosting tree algorithm. The predic-
tion of specific blade pitch faults was demonstrated in [20],
using genetic programmed decision trees. Here, the maximum
prediction time was 10 minutes, at a 68% accuracy and 71%
specificity. The SCADA data was also at a resolution of 1s
rather than the more common 10 minutes.

The development of indicators for specific major component
failures has seen more success in the literature. One effort by
Butler et al. included the use of main shaft RPM, hydraulic
brake temperature and pressure, and blade pitch position to
build a model using Sparse Bayesian Learning. This was able
to show a strong indicator of main bearing failure up to 30



days in advance [21]. Another effort used neural networks and
normal behaviour models to model the generator performance.
This showed that abnormalities in the residual signal were
visually noticeable up to one year in advance of a full gearbox
failure [3]. However, neither of these studies were able to
verify their findings on a test set due to the inherent lack
of data when dealing with full component failure.

It is clear from the literature that some indication of com-
plete failure of a main component can be detected months in
advance solely using SCADA data. However, for less serious,
but more frequent faults which also contribute to degraded
turbine performance, such as power feeding, blade pitch or
diverter faults, prediction more than a half hour in advance
is currently very poor. In this paper we attempt to widen the
prediction capability for these types of faults. Although the
most successful attempt to do this ([19], discussed above)
found a boosting tree algorithm to be more successful than
other methods, including Support Vector Machines (SVMs),
the authors did not go into detail on the specifics of the models
used. However, SVMs are a widely used and successful tool
for solving classification problems. The basic premise behind
the SVM is that a decision boundary is made between two
opposing classes, based on labelled training data. A certain
number of points are allowed to be misclassified to avoid
the problem of overfitting. They are very well suited to
this specific problem, where the relationship between a high
number of parameters (e.g., the many different parameters
collected by a SCADA system) can be complex and non-
linear [22], [23]. They have been used in other industries for
condition monitoring and fault diagnosis with great success. A
review by [24] showed that SVMs have been successfully used
to diagnose and predict mechanical faults in HVAC machines,
pumps, bearings, induction motors and other machinery. CM
using SVMs has also found success in the refrigeration, semi-
conductor production chemical and process industries [25].

III. DATA

A. Description of Data

The data in this study comes from a 3 MW direct-drive
turbine which supplies power to a major biomedical devices
manufacturing plant located near the coast in the South of
Ireland. There are three separate datasets taken from the
turbine SCADA system; “operational” data, “status” data and
“warning” data. The data covers an 11 month period from May
2014 - April 2015.

1) Operational Data: The turbine control system monitors
many instantaneous parameters such as wind speed and ambi-
ent temperature, power characteristics such as real and reactive
power and various currents and voltages in the electrical
equipment, as well as temperatures of components such as
the generator bearing and rotor. The average, min. and max.
of these values over a 10 minute period is then stored in the
SCADA system with a corresponding timestamp. This is the
“operational” data. A sample of this data is shown in Table
I. This data was used to train the classifiers, and was labelled
according to various filters, as explained in Section III-B. The

TABLE I
10 MINUTE OPERATIONAL DATA

TimeStamp Wind
Speed
(avg.)

Wind
Speed
(max.)

Wind
Speed
(min.)

Power
(avg.)

Power
(max.)

Power
(min.)

Bearing
Temp
(avg.)

m/s m/s m/s kW kW kW ◦C
09/06/2014 14:10:00 5.8 7.4 4.1 367 541 285 25
09/06/2014 14:20:00 5.7 7.1 4.1 378 490 246 25
09/06/2014 14:30:00 5.6 6.5 4.5 384 447 254 25
09/06/2014 14:40:00 5.8 7.5 3.9 426 530 318 25
09/06/2014 14:50:00 5.4 6.9 4.5 369 592 242 25

initial operational data contained roughly 45,000 datapoints,
representing the 11 months analysed in this study.

2) Status Data: There are a number of normal operating
states for the turbine. For example, when the turbine is
producing power normally, when the wind speed is below
uc, or when the turbine is in “storm” mode, i.e., when the
wind speeds are above us. There are also a large number
of statuses for when the turbine is in abnormal or faulty
operation. These are all tracked by status messages, contained
within the “Status” data. This is split into two different
sets: (i) WEC status data, and (ii) RTU status data. The
WEC (Wind Energy Converter) status data corresponds to
status messages directly related to the turbine itself, whereas
RTU data corresponds to power control data at the point of
connection to the grid, i.e., active and reactive power set
points. Each time the WEC or RTU status changes, a new
timestamped status message is generated. Thus, the turbine
is assumed to be operating in that state until the next status
message is generated. Each turbine status has a “main status”
and “sub-status” code associated with it. See Table II for a
sample of the WEC status message data. Any main WEC status
code above zero indicates abnormal behaviour, however many
of these are not associated with a fault, e.g., status code 2 -
“lack of wind”. The RTU status data almost exclusively deals
with active or reactive power set-points. For example, status
100 : 82 corresponds to limiting the active power output to
82% of its actual current output.

3) Warning Data: The “Warning” data on the turbine
mostly corresponds to general information about the turbine,
and usually isn’t directly related to turbine operation or safety.
These “warning” messages, also called “information mes-
sages” in some of the turbine documentation, are timestamped
in the same way as the status messages. Sometimes, warning
messages correspond to a potentially developing fault on the
turbine; if the warning persists for a set amount of time and is
not cleared by the turbine operator or control system, a fault is
raised and a new status message is generated. For this reason,
it was decided that warning messages can be mostly ignored
in this analysis, as the information is captured by the status
messages. A single exception to this is mentioned in Section
III-B1.

B. Data Labelling

In order to properly train a classifier, it is important that the
data is correctly labelled. In this paper, we attempt three levels



TABLE II
WEC STATUS DATA

Timestamp Main
Status

Sub
Status

Status Text

13/07/2014 13:06:23 0 0 Turbine in Operation
14/07/2014 18:12:02 62 3 Feeding Fault: Zero Crossing

Several Inverters
14/07/2014 18:12:19 80 21 Excitation Error: Overvoltage

DC-link
14/07/2014 18:22:07 0 1 Turbine Starting
14/07/2014 18:23:38 0 0 Turbine in Operation
16/07/2014 04:06:47 2 1 Lack of Wind: Wind Speed

too Low

of classification: fault/no-fault, where samples are classified
as faulty or fault free; fault diagnosis, where samples are
classified as a specific fault, or fault-free; and fault prediction,
where we attempt to classify data as a specific fault up to one
hour in advance of the fault occurring. This is achieved by
splitting the initial operational data into labelled “no-fault”,
“all faults”, “specific fault” and “fault prediction” datasets.
The process for labelling data is explained in this section.

1) No-Fault Dataset: For all three levels of classification,
a common “no-fault” data set is needed consisting of nominal
fault-free operation. To create this, three different filters were
applied to the full set of 10-minute operational data. First,
WEC status codes corresponding to nominal operation were
selected. These are “0 : 0 - Turbine in Operation”, “2 : 1
- Wind Speed too Low” and “3 : 12 - Storm Wind Speed”.
Operational data with timestamps that corresponded to at least
30 minutes after these statuses came into effect and 120
minutes before they changed were chosen. These time-bands
were found empirically and eliminate any transients that may
arise from going from fault-free to faulty operation or vice-
versa.

Next, all operational data corresponding to RTU statuses
where power output was being curtailed were filtered out. This
left only one status, “0 : 0 - RTU in operation”. For this, a
time band of only 10 minutes was chosen, as any transients
in the electrical control system would not last very long.

Finally, times corresponding to a single specific warning
message (main warning code “230 - Power Limitation (10h)”)
were filtered out. This warning corresponds to slightly limited
power output during nominal operation for one of a number of
reasons, including turbine noise control during certain hours,
an increase in internal temperatures on a hot day, or grid
regulation. When this message is generated, there follows a
10-hour period where turbine power output may or may not
be curtailed. Although considered a part of normal operation,
for the purposes of this study it was decided to filter this out
to give a clearer distinction for fault classification. It may be
included in future work. After all three stages of filtering, the
no-fault data contained roughly 28,000 points of 10 minute
operational data.

To verify that only data from when the turbine was in
nominal operation was included in the “no-fault” dataset,

the power curve of the filtered data was plotted to check
that it conformed to the nominal shape as seen in Fig. 2
(a). An algorithm for filtering out power curve anomalies, as
developed in [17], was used to highlight the data points which
were outside the estimated bounds of nominal operation. Fig.
3 (a) shows the power curve generated from operational data
before any filtering took place. The points in red are those
which the algorithm marked as anomalous. In this case there
were 4,000 such points. Fig. 3 (b) shows the filtered no-fault
dataset. After the three step filtering process, there were still
roughly 400 points, highlighted in red, which the algorithm
identified as abnormal. Because these make up less than 1%
of the overall no-fault dataset and because, in practice, turbine
data will always contain noise, it was decided to include these
in the fault-free data initially.

2) All Faults Dataset: In order to classify fault/no-fault op-
eration, it was also necessary to develop a set of labelled fault
data. For this, a list of frequently occurring faults was made.
For these faults, status messages with codes corresponding to
the faults were selected. Next, a time band of 600s before the
start, and after the end, of these turbine states was used to
match up the associated 10-minute operational data. The 10
minutes timeband was selected so as to definitely capture any
10-minute period where a fault occurred, e.g., if a power feed-
ing fault fault occurred from 11:49-13:52, this would ensure
the 11:40-11:50 and 13:50-14:00 operational data points were
labelled as faults. The faults included are summarised in Table
III. Note that the fault frequency refers to specific instances of
each fault, rather than the number of data points of operational
data associated with it, e.g., a generator heating fault which
lasted one hour would contain 6 operational data points, but
would still count as one fault instance. Feeding faults refer
to faults in the power feeder cables of the turbine, excitation
errors refer to problems with the generator excitation system,
mains failure refers to problems with mains electricity supply
to the turbine, malfunction aircooling refers to problems in
the air circulation and internal temperature circulation in the
turbine, and generator heating faults refer to the generator
overheating.

3) Specific Fault Datasets: For specific faults, the same
methodology for all faults was used, but this time single status

Fig. 3. Power curves for (a) Initial set of operational data (b) Fault-free
operational data. Abnormal-looking values are shown to the right of the curve.



TABLE III
FREQUENTLY OCCURING FAULTS, LISTED BY CORRESPONDING STATUS

CODE

Fault Main Status
Code

Fault
Incidence
Frequency

Operational
Data Points

Feeding Fault 62 92 251
Excitation Error 80 84 168
Malfunction Aircooling 228 20 62
Mains Failure 60 11 20
Generator Heating Fault 9 6 43

codes for each fault code in Table III were used. Again a
time band of 600s before the start and after the end of each
fault status was used to match up corresponding 10-minute
operational data.

4) Fault Prediction Datasets: In order to try and predict
specific faults, the time band around which faults were classi-
fied was extended by varying degrees. These were: 10, 20, 30,
60, 120 and 360 minutes before a specific fault. This meant
the operational data points leading up to a specific fault were
also included in that fault class.

IV. METHODOLOGY

For all three levels of classification, an SVM was trained
using scikit-Learn’s LibSVM implementation [26], [27]. Each
dataset was randomly shuffled and split into training and test-
ing sets, with 80% being used for training and the remaining
20% reserved for testing. Because the original operational
dataset had 60+ features, only a subset of 30 specific features
were chosen to be included for training purposes. It was found
that a number of the original features corresponded to sensors
on the turbine which were broken, e.g., they had frozen or
blatantly incorrect values. The most relevant of the remaining
features were then selected for inclusion based on the authors’
domain knowledge. A subset of these features, corresponding
to 12 temperature sensors on the inverter cabinets in the
turbine, all had very similar readings. Because of this, it
was decided to instead consolidate these and use the average
and standard deviation of the 12 inverter temperatures. This
resulted in 29 features being used to train the SVMs, which
were all scaled individually to unit norm. This was because
some features, e.g., power output had massive ranges from 0
to thousands, whereas others, e.g., temperature, ranged from
0 to only a few tens.

A randomized grid search was then performed over a num-
ber of hyperparameters used to train each SVM to find the ones
which yielded the best results. These were then verified using
10-fold cross validation. The scoring metric used for cross
validation was a mean of the weighted precision and recall
(see the end of this section for an explanation of these terms).
The hyperparameters searched over were C, which controls the
number of samples allowed to be misclassified, γ which de-
fines how much influence an individual training example has,
and the kernel used. The three kernels which were tried were
the simple linear kernel, the radial-basis (Gaussian) kernel and
the polynomial kernel. The data was heavily imbalanced -

TABLE IV
HYPERPARAMETERS USED IN RANDOMIZED GRID SEARCH

Hyperparameter Values
C 0.01, 0.1, 1, 10, 100, 1000
c.w. 1, 2, 10, 50, 100
Kernel Linear, Polynomial, R.B.F.
γ 1E-3, 1E-4, 1E-5

there were on the order of 102 more no-fault samples than
fault-class samples. Two different approaches were tried to
mitigate this effect. In the first approach, a class weight, c.w.
is added to the minority class when calculating C for that
class. In this way, the new value for C for the fault class, Cw,
can be seen in Eq. 1. A number of different class weights were
added to the set of hyperparameters being searched over for
this approach, which can be seen in Table IV.

Cw = C ∗ c.w. (1)

The second approach instead selected a balanced set of data
to train on; after the full set of data was split into training and
test parts, the training set was further split to include the same
number of fault-free instances as fault instances. The test data
was not altered in any way so as to preserve the imbalance
seen in the real world.

A number of scoring metrics were used to evaluate final
performance on the test set. These were specificity, precision,
recall and F1-Score, the harmonic mean of precision and
recall. The overall accuracy of the classifier on the test set was
not used as a metric due to the massive imbalance in the data
sets. For example, if 4990 samples were correctly labelled as
fault-free, and the only 20 fault samples were also incorrectly
labelled as such, the overall accuracy of the classifier would
still stand at 99.6%. The formulae for calculating specificity,
precision, recall and the F1-score can be seen below:

Recall = tp/(tp+ fn) (2)

Precision = tp/(tp+ fp) (3)

F1 = 2tp/(2tp+ fp+ fn) (4)

Specificity = tn/fp+ tn (5)

where tp is the number of true positives, i.e., correctly
predicted fault samples, fp is false positives, fn is false
negatives, i.e., fault samples incorrectly labelled as no-fault,
and tn is true negatives.

V. RESULTS & DISCUSSION

The results of the hyperparameter search for the case of a
balanced training set, with c.w. set to 1 can be seen in Table
V. The results of performing this search on the full imbalanced
training set, including different values of c.w., can be seen in
Table VI. Training time for the case of the smaller balanced



TABLE V
HYPERPARAMETERS FOUND SEARCHING OVER FULL TRAINING SET

Test Set C kernel γ c.w.

Fault/No-Fault 1000 linear .001 2
Feeding Faults 1000 linear .0001 2
Excitation Faults 1000 linear .0001 2
Generator Heating Faults 1000 linear .0001 10

TABLE VI
HYPERPARAMETERS FOUND SEARCHING OVER BALANCED TRAINING

SET (c.w. SET TO 1)

Test Set C kernel γ

Fault/No-Fault 1000 linear .0001
Feeding Faults 100 linear .001
Aircooling Faults .01 linear .0001
Excitation Faults 1000 linear .0001
Generator Heating Faults 1000 linear .0001
Mains Failure Faults 100 linear .0001

TABLE VII
RESULTS FOUND USING BALNCED TRAINING SET (c.w. SET TO 1)

Dataset Precision Recall F1 Specificity
Fault/No-Fault .08 .9 .15 .83
Feeding Faults .05 .87 .09 .85
Aircooling Faults .12 .27 .17 .99
Excitation Faults .04 1 .08 .85
Generator Heating Faults .56 1 .71 .99
Mains Failure Faults .01 1 .01 .9

training set was less than one minute. For the case of the full,
balanced set, training time was around 30 minutes. The PC
used had an intel core i5-4300U CPU and 8GB of RAM.

A. Fault/No-Fault Dataset

When training the data on a balanced set, the fault/no-
fault prediction performance on recall and specificity is quite
high (0.9 and 0.83, respectively), as seen in Table VII. The
high recall means there are very few missed fault instances.
However, the SVM proved to have very poor precision, and,
as a result, a low F1 score. When compared with work
done in [19], our methodology has achieved a better recall
and specificity (compared with 0.84 and 0.66). There was
no mention of precision score in other literature, so it is
hard to benchmark this. The poor precision represents a high
proportion of samples incorrectly labelled as faulty compared
to correctly labelled as faulty. This is a common problem with
imbalanced data. As previously mentioned, a way to deal with
this was to train on the full imbalanced set, and introduce a set
of c.w. hyperparameters to the graph search. When this was
performed on the fault/no-fault set, precision and specificity
were both increased to 1, but recall was reduced to 0.48,
as seen in Table VIII. This shows the inherent trade-off in
precision and recall.

B. Specific Fault Datasets

For the prediction of specific faults trained on the balanced
set, performance was similar the basic Fault/No-Fault case,

TABLE VIII
RESULTS FOUND USING FULL TRAINING SET

Dataset Precision Recall F1 Specificity
Fault/No-Fault 1 .48 .65 1
Feeding Faults .97 .58 .72 .99
Excitation Faults 1 .33 .5 1
Generator Heating Faults 1 1 1 1

TABLE IX
RESULTS FOUND ONE HOUR IN ADVANCE FOR THE CASES OF BALANCED

AND IMBALANCED TRAINING SETS

Dataset Prec. Rec. F1 Spec.
Feeding Faults (imbalanced)) .08 .97 .15 .79
Feeding Faults (balanced) 1 .28 .44 1
Excitation Faults (imbalanced) .06 1 .11 .76
Excitation Faults (balanced) 1 .16 .27 1
Generator Heating Faults (imbalanced) .1 1 .17 .98
Generator Heating Faults (balanced) 1 1 1 1

apart from on Aircooling Faults which showed very poor
performance all-round. Predicting Generator Heating Faults
showed the best promise, with a Precision of 0.56 - well above
any of the others, a recall of 1 and a specificity of 0.99. It
also yielded an F1 score of 0.71. It is hard to compare the
case of specific faults against previous studies in [19], as the
test set at this level of detection in that study was flawed; it
used a balanced number of samples from each class, which
improves test performance, but does not represent the true
distribution of data. Nevertheless, even compared to this, our
model performed better for predicting a number of specific
faults - the best score in that study was a recall of 0.87 and
specificity of 0.63. It was decided to train on the full set of data
only for three of the five specific faults, as these had a higher
frequency than the others. The results of this can be seen in
VIII. Here, for the most part, the same trade off in precision
and recall can be seen as in the fault/no-fault set. However,
extremely good performance was seen in the prediction of
Generator Heating Faults. This could be due to the fact that
in the test set, there were only seven instances of generator
heating faults, although there were no false positives among
the roughly 5,000 no-fault instances.

C. Advanced Prediction of Specific Faults

When the time band before specific faults was stretched
from 10 minutes to one hour, good performance on recall
and specificity was still possible. The results of this can be
seen in Table IX. Here again the trade-off between precision
and recall can be seen when training on the imbalanced and
balanced training sets. Once again, however, generator heating
faults were predicted with unprecedented accuracy one hour in
advance, with a perfect specificity and F1 score. These results
represent significant advancement of work done in [19], where
the best performance of recall and specificity at one hour in
advance of a specific fault were .24 and .34, respectively.



VI. CONCLUSION

A new methodology for classifying and predicting turbine
faults based on SCADA data was investigated. The fault
classification operates on three levels: distinguishing between
fault/no-fault operation, classifying a specific fault, and the
prediction of a specific fault one hour in advance. The results
were very promising and show that distinguishing between
fault and no fault operation is possible with very good recall
and specificity, but the F1 score is brought down by poor
precision. A trade-off is possible using a slightly different
method of training which yields improved precision but poorer
recall. In general, this was also the case for classifying a
specific fault, and for predicting specific faults in advance. The
less than ideal overall performance could be due to the highly
imbalanced nature of fault data, with the no-fault class having
an overwhelming majority of samples. However, generator
heating faults were classified with a perfect F1 score, and one
hour prediction also yielded a perfect score.

The methodology presented in this paper trained multiple
binary classifiers on separate test sets for each fault. This is not
ideal as there is typically only one unified “test set” containing
multiple faults in real world applications. Future work will take
this into account so that a practical application of this research
could be made possible using multi-class classification. It is
planned to apply new techniques for using SVMs when work-
ing with the highly imbalanced nature of fault data to improve
the precision and recall performance seen in this paper. As
well as this, other techniques which perform well at multi-
class classification such as boosting trees, logistic regression
and ensemble methods will be compared. Furthermore, it is
planned to obtain more data with more fault instances to verify
the prediction performance obtained in this study. Advanced
feature extraction and selection will also be utilised to verify
that all features used in this study are relevant, and to check
if there are any others which could improve performance.
Finally, the precision/recall trade-off will be tuned to minimize
overall operational cost by looking at the cost of specific
“missed” faults vs. false alarms. This tuning can be achieved
through appropriately biasing the classifier.
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