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ABSTRACT 
 

Concept clustering is an important element of the product 
development process. The process of reviewing multiple 
concepts provides a means of communicating concepts 
developed by individual team members and by the team as a 
whole. Clustering, however, can also require arduous iterations 
and the resulting clusters may not always be useful to the team. 
In this paper, we present a machine learning approach on 
natural language descriptions of concepts that enables an 
automatic means of clustering. Using data from over 1,000 
concepts generated by student teams in a graduate new product 
development class, we provide a comparison between the 
concept clustering performed manually by the student teams 
and the work automated by a machine learning algorithm. The 
goal of our machine learning tool is to support design teams in 
identifying possible areas of “over-clustering” and/or “under-
clustering” in order to enhance divergent concept generation 
processes. 
Keywords: Machine learning, vector representation of words, 
word2vec, concept clustering, product design 

1 INTRODUCTION 
1.1 Concept classification, clustering, and 
generation in the design process 

Classification and clustering are semantically similar in 
that they are both tasks of grouping a given set of objects into 
meaningful and useful groups. However, there are important 
differences: classification is the task of grouping objects into 
pre-defined classes created with prior knowledge, whereas 

clustering is the task of finding underlying patterns and 
grouping objects together based on their similarity [1]. Concept 
clustering is a crucial part of the product development process 
as it allows designers to interpret the concepts they generate 
and decide which of these concepts to develop, modify or adopt 
[2]. The process of reviewing multiple concepts provides a 
means of communicating concepts developed by individual 
team members and by the team as a whole. 

Concept classification and clustering have a long history 
rooted in psychology [3] and artificial intelligence. Smith [4] 
defines a “concept” as “a mental representation of a class or 
individual.” Dong and Agogino [5] developed a learning 
algorithm to automate the process to handle a large quantity of 
natural language texts to construct these design representations 
or concepts. Their attempts recommend that designers find 
relevant information based on terminologies and organize the 
data in a more meaningful way. This approach is similar to 
Wood et al. [6] in text-based information analysis, and our 
research was motivated by such text data/information retrievals 
for concept clustering in new product development.  

In the design process, choosing the right concept classes 
requires a significant amount of time and effort to narrow down 
concepts into a manageably small number of compelling 
clusters; it is crucial to explore these clustered opportunity 
areas before moving on to the next phase of the product 
development process, such as concept selection [7]-[9]. 
Concept clustering can also be used to identify cluster areas 
that have a relatively small number of concepts, which can 
indicate to the design team useful targets for further divergent 
concept generation.  
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Clustering of design concepts is useful for organizing 
concepts into similar groups, therefore aiding designers in 
removing duplicate concepts and managing a large number of 
similar concepts [10]. Clustering, however, can also require 
arduous and ineffective iterations, and the resulting clusters 
may not always be effective for team communication, which is 
key to the success of the design process [11].  

While, in machine learning, conceptual clustering methods 
have been well-developed as a means to summarize and 
organize data [12], the application of concept clustering for 
designers who are actually using it in real-world design projects 
during concept generation has been relatively underexplored. 
The computational tool developed by Bryant et al. [13],[14] 
assists designers in the early concept development process to 
automatically generate new concepts.  

From a machine learning perspective, classification is often 
performed with supervised learning against a known standard, 
whereas clustering typically uses unsupervised learning as there 
is rarely a standard to learn against. Many clustering algorithms 
have been proposed, including K-means [15], spectral 
clustering [16], mean-shift [17], and hierarchical clustering 
[18].  

In our research, in order to automatically generate concept 
clusters, we compute the numerical similarity between 
concepts. We calculate this numerical similarity through 
paragraph similarity with word embedding as a building block 
and compare the results between automatic and human 
clustering.  

1.2 Short text clustering 
Semantic clustering has been studied widely and many 

approaches have been proposed. In our review, we discuss 
semantic clustering in terms of three parts: (1) word 
embedding, (2) clustering algorithms, and (3) applications. 

Semantic clustering is a form of computational linguistics 
that evaluates quantitative measures of similarities in the 
meaning of words. In order to process human languages 
computationally, there have been approaches to embed, or 
encode, “words” into vectors [19]-[21], as is done with “pixels” 
of images or “sampled frequencies” of audio data. There is no 
straightforward way to conduct the embedding, but the main 
idea is that words of semantically similar meaning should have 
similar vectors (i.e., nearby points in the high-dimensional 
embedding space).   

Overall, there are two branches in word embedding: 
counting-based methods and predicting-based methods. 
Counting-based methods (e.g., Latent Semantic Analysis) 
basically rely on the statistics of word appearance in 
documents. Predicting-based methods (e.g., neural language 
models) try to learn embedding by predicting a word from the 
nearby words.  More details on these two branches can be 
found in Baroni et al. [22].  

Deep learning uses computational models with multiple 
processing layers to learn representations of data with multiple 
levels of abstraction[23]. Given the recent success of deep 
learning in various other fields, there have been several 

approaches using deep learning in word embedding. For 
example, Word2Vec [20] is known as a well-defined and useful 
predicting-based method of word embedding. In this research, 
we use Word2Vec as our building block. 

In both counting-based and predicting-based methods, 
there are various ways to handle “textual data” given by a set of 
words (i.e., word vectors) for the purpose of clustering them. 
Broadly speaking, there are hierarchical approaches (e.g., non-
negative matrix factorization [24]) and partitional approaches 
(e.g., K-means [25]). There is no well-established preference 
between the two approaches. While Steinbach et al. [26] posit 
that K-means performs better than hierarchical clustering in the 
document clustering domain, Zhao and Karypis [27] state that 
even though partitional clustering algorithms (including K-
means) are computationally efficient for large datasets, they are 
inferior to agglomerative hierarchical methods in terms of 
clustering quality. In this research, cosine similarity measures 
rather than Euclidean distance made more sense, thus favoring 
hierarchical clustering over partitional clustering. 

Le and Mikolov [28] introduced Para2Vec, which is an 
extended version of Word2Vec, assigning high-dimensional 
vectors to paragraphs. However, the Para2Vec algorithm was 
originally designed to handle a very high number of 
paragraphs, and thus was less useful for our relatively small 
number of concept descriptions (~1,000), given as short text 
paragraphs. Therefore, we define our own similarity metric for 
short texts, as discussed in Section 2.2.  

Semantic clustering has seen a wide range of applications, 
including document classification [29][30], filtering repetitive 
news/blog feeds[31], identifying topics in programming source 
code [32], identifying structure in a patent database [33] and 
identifying distance of designer’s points of view [34]. In this 
research, we use semantic clustering on short text descriptions, 
which has previously been shown to be successful in mobile 
malware app detection [35] customer review classification [36], 
and Twitter information filtering [37]. We apply our semantic 
clustering algorithm in an effort to support design processes, 
which was a similar focus in Dong and Agogino’s [38] work. 

2 RESEARCH DESIGN 
As shown in Figure 1, we use the concept clustering data 

collected from a graduate level design course.  

 
Figure 1 Processing flow of our proposed method 

Taking certain fields of them as paragraphs, a similarity matrix 
is calculated by the word embedding generated from a general 
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corpus. Then, concepts are clustered by machine learning 
algorithms. We compare the machine clustering with human 
clustering in the form of Human-Machine plots (HM Plot). 

2.1 Data source 
The concepts we use as input data in this work were 

collected from a human-centered design course we will label as 
ME300. The course was taught in Fall 2016 at the University of 
California, Berkeley, and aimed to teach human-centered 
design methods using theDesignExchange website.1  Students 
in ME300 were split into teams, each tasked with a unique 
design challenge (Table 1).  
Table 1. ME300 teams and their associated projects 

Team # Team Design Challenge 
1 Understanding the interface between humans and 

autonomous vehicles 
2 Navigating the deep seas with an autonomous 

underwater vehicle 
* Connect kids and parents using wearable technology  
3 Making the cycling experience safer more navigable 

using wearable technology 
* Automatically generating control-based dynamic 

simulation models 
4 Creating and implementing aesthetic wind turbines 
5 Improving the delivery of ear medication 
6 Using microneedle arrays for transdermal drug 

delivery 
7 Integrating innovative robotics with educational 

curricula 
* Including nature in the search for ideal housing 
8 Improving the outcomes of spinal surgeries 
9 Improving disaster relief with free-standing robotics 
10 Exploring a new way to harvest ocean power 
11 Enhancing theme park experiences through 

improved character costumes 
(*Teams with * did not sufficiently complete their concept 

clustering exercise and therefore we do not include their data in our 
analysis) 

During the semester, student teams generated and 
described 1,154 concepts using a “half-sheet” template (Figure 
2) that included the concept’s title, a brief text description, a list 
of key attributes/features, a rough sketch of the idea, and a list 
of creativity methods used (if any).  

The teaching team provided the half-sheet template to 
students as part of an individual homework assignment. The 
students were asked to generate ideas individually and bring 
them to class to share with their team and to be used in a 
concept clustering activity. While concept clustering was part 
of the class’s team assignments, three (out of 14) teams did not 
include the clustering activity results in their documentation. 
Therefore, we focused on the 11 teams, renumbered as Team 1-
11, who explicitly documented their clusters across a complete 
list of all generated concepts in their submissions. The natural 

                                                
1 https://www.thedesignexchange.org 

language toolkit, NLTK2, was used to mark the speech-of-tag in 
concept description. As shown in Table 2, each team described 
their concepts in 17.77 words, on average, including 5.97 nouns 
and 3.47 verbs. 

 
Figure 2 An Example Half-sheet from Team 1 

 
Table 2. Statistical details of concept description 

Team # Average Description 
length 

Average # 
Nouns 

Average # 
Verbs 

1 15.95 5.89 3.06 

2 24.84 6.66 4.84 

3 13.33 5.24 3.01 

4 24.11 7.59 4.32 

5 17.43 5.33 3.49 

6 21.93 6.75 4.25 

7 7.86 4.81 1.61 

8 18.05 5.98 3.57 

9 15.74 5.34 3.04 

10 13.42 5.22 2.84 

11 22.80 6.90 4.18 

Average 17.77 5.97 3.47 

 
In this research, we aim to address the primary research 

question as to how the results of machine learning based 
concept clustering differ from manual concept clustering. We 
then explore implications for supplementing human clustering 
with machine learning clustering in product design teams. 

2.2 Machine clustering using deep learning 
methods 

Our goal is to quantitatively cluster design concepts, which 
are in the format of natural language paragraphs written by 
members of product design teams.  Automatic clustering 
requires a similarity (or distance) metric between items. For 
example, consider a pair of concept paragraphs in our data set 
from Team 1’s autonomous vehicle project: c1 and c2, (c1 = 
“Instead of using steering wheel, user will use screen to control 
car” and c2 = “User can sleep inside a moving car”). As the 
concept description is a relatively short paragraph, we applied 

                                                
2 http://www.nltk.org 
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semantic similarity, rather than word similarity, to avoid 
sensitivity to word choice. In the next section, we propose a 
paragraph similarity metric sim(c&, c()  based on word 
similarity. 

2.2.1 Word similarity 
As a first step, we conduct word embedding using 

Word2Vec, which means we assign a d-dimensional continuous 
vector to each word. We use d = 200 as typical [39], applied to 
100MB text83  as the corpus, including 47,134 unique words in 
the vocabularies.  Text8 was cleaned to contain only letters a-z 
and nonconsecutive spaces. Using the Tex8 corpus, a word can 
be expressed as a d-dimensional vector w. For a pair of words, 
w& and w(, we use similarity metric such as: 

sim w&, w( =
w& ∙ w(

w& w(
. 

To show the efficacy of our word embedding, we illustrate 
similarity calculations for Team 1 between the query words and 
k nearest neighbor words. In Table 3, we show four nearest 
words for a given query word. From this table, we can see that 
the nearest neighbor words are, in fact, semantically similar to 
the query words. Therefore, we proceed with our similarity 
metric. 
Table 3. Four nearest neighbor (NN) words to each query word in the 

embedding space. In each cell, we show the similarity calculation 
between the query word and the nearest neighbor word. 

Query 
word 

1NN 
 

2NN 3NN 4NN 

Steering Loading 
(0.813) 

Brake 
(0.806) 

Hydraulic 
(0.784) 

Crank 
(0.780) 

Driving Pulling 
(0.608) 

Mounting 
(0.607) 

Glider 
(0.600) 

Charging 
(0.597) 

Safety Maintenance 
(0.765) 

Handling 
(0.694) 

Monitoring 
(0.691) 

Surveillance 
(0.675) 

2.2.2 Paragraph similarity 
We define the concept, together with its description, as a 

paragraph. A paragraph is a set of featured words, c1 =
	{w&

1 , w(
1 , … , w56

1 }, where the featured words refer to the noun 
and verb words in the paragraph, and l1  is the number of 
featured words in c1. The number of words in each paragraph, 
or each concept, varies.  

For a given pair of concept paragraphs, c1 and c9, we define 
a similarity matrix S;6×;= ∈ 	ℝ

56×5=  with pairwise word 
similarities such as: 

S;6×;=|(A,B) = sim(wA
1 , wB

9 ) 
where S|(A,B)  represents (m, n)  element of the matrix S . 

Upon this full pairwise matrix, we calculate real-valued concept 
paragraph similarity score sim	(c1, c9) by averaging p percent of 
highest scores in the matrix. Specifically, we denote 

sim(c1, c9) 	= 	1/K	 dH

I

HJ&

 

                                                
3 http://mattmahoney.net/dc/text8.zip 

where dH  is the largest K  scores in S;6×;=	  and K =
p ⋅ l1 ⋅ l9 . P is a percentage that controls the extent to which the 

paragraph similarity calculation uses the words from the 
concept description. A too low p-value may mislead the 
algorithm to focus only the words that are frequently used but 
may not be topic-related. On the other hand, if the p-value is 
too high, words that are specific but isolating in the word vector 
space may mislead the algorithm to lower the similarity 
between a concept pair. Given these constraints, we empirically 
tested different p values and found p=15% to be the most 
effective with this application. Note that the similarity score has 
a range between [-1, 1]. 

To illustrate these algorithmic techniques, consider the 
example of Team 1 again. Using the paragraph similarity 
metric, we calculate all pairwise distances between the 82 
concepts generated by Team 1. Team 1 focused on the human 
interactions with an autonomous vehicle, and their concepts are 
shown as a heat map [40] in Figure 3.  

 
Figure 3 Heat map of concepts generated by Team 1 
The concepts in the heat map have been sorted by their 

machine-derived semantic similarity, with similar concepts 
close to each other. Thus, the block-diagonal structure shows 
the algorithm’s ability to cluster semantic relevant concepts. As 
shown in the magnified part of the heat map, concepts co-
located in the high-similarity areas are semantically close to 
each other (e.g., “comfortable light in car”, “sleeping inside 
car”, “obstacle warning system”, “sensor failure warning”, 
“emergency warning”, “low battery warning”, and 
“maintenance warning”). These dark-colored areas visually 
distinguish the concept clusters that the algorithm generated. 
2.2.3 Clustering 

The similarity matrix allows us to conduct hierarchical 
clustering [18] of each team’s concepts. Although the number 
of clusters can be adjusted, we choose - as a first step for now - 
to set the number of machine clusters to be the same as the 
number of human clusters, thus simplifying the comparison 
between them. In the future, we will continue to develop our 
algorithm to understand how it behaves when a different 
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number of clusters is chosen or where the algorithm self-
generates the optimal number. 

To address the problem of naming each machine generated 
cluster, we attempt to find out those words that contribute most 
when calculating the concept similarity matrix. Specifically, for 
the k-th concept cluster, ��) � � ���� �	� � � �#-�, we count every 
word pair for every concept pair ���� ��
 where ��� �) � ��) and 
� . /, and choose the most frequent word pair as a cluster label. 
When a concept cluster includes only one concept, we choose 
its concept name as a cluster label. 

*�������7�,/�������'���6��'7��
To compare the results of concept clustering done 

manually (human clustered) and automatically (machine 
clustered), we created Human-Machine plots (HM plot) (see 
Section 3.1). The HM plots show two distinct patterns across 
clustered concepts: under-clustering and over-clustering. Our 
success in identifying these patterns highlights a potential 
application area where deep learning tools can support design 
teams. We discuss these patterns and their implications in the 
rest of the paper. The remainder of the paper discusses the 
preliminary stages of our machine learning algorithm on natural 
language descriptions of concepts and illustrates clustering 
patterns and their implications.  

3.1 Human-Machine plot (HM plot) 
The student teams manually assigned each concept to one 

of their human defined clusters, 0� , and our algorithm 
automatically assigned each concept paragraph to one of the 
machine learning based clusters, ��. In Figure 4, we illustrate an 
example distribution based on 0�� ��  locations.  

 

 
Figure 4 A depiction of an HM Plot. The x-axis shows the index of 
human clustering, the y-axis shows the index of machine clustering, 

and the size of the circles shows the number of concepts in each 
cluster. 

We note two distinct patterns of concept clusters that 
emerge from the HM plot data: (pattern #1) under-clustering 
and (patter #2) over-clustering. While we do not claim that 
there is a “right” or “wrong” way to cluster concepts, nor do we 
believe that machine-generated clusters are better than human-

generated clusters, rather we posit that our algorithm provides 
meaningful opportunities for teams to revisit their clusters and 
thus engage in more concept generation and development 
processes. 
Pattern #1: Machine suggests that teams under-clustered 
their concepts. 

Under-clustering refers to a pattern where the algorithm 
breaks apart a single large human generated cluster into 
multiple clusters. Figure 5 depicts the under-clustering pattern of 
part of the clusters. 

 
Figure 5 A depiction of the under-clustering pattern of part of the 

clusters on an HM plot 
This pattern highlights an opportunity for the students to 

revisit their clusters and think more divergently in the new 
machine-generated cluster areas. When the clusters are too 
large, as is the case in under-clustering, the teams may lose the 
main value proposition of that group of concepts. The cluster 
becomes a grab bag, lacking definition that is necessary for the 
cluster to be useful in the downstream selection process. To 
remedy this challenge, the student teams can see the clusters 
created by the algorithm and use this to reconsider their 
clusters, which may spur further divergent concept generation 
in each new cluster. 
Pattern #2: Machine suggests that teams over-clustered their 
concepts.  

Over-clustering refers to a pattern where the algorithm 
combines several small human-generated clusters into a single 
large machine cluster. Figure 6 depicts the over-clustering 
pattern of part of the clusters.  

This pattern highlights an opportunity for students to 
revisit their clusters and either perform concept generation on 
these minimally populated clusters, or think about combining 
similar clusters together. By pointing out opportunities to revisit 
over-clustered concepts, teams might consider expanding 
concept generation in underpopulated small clusters. 
Conversely, if the team believes the number of concepts is 
sufficient, they may want to pare down their clusters into sets 
that could become more useful in further convergent concept 
selection. 

�������	
��������
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Figure 6 A depiction of the over-clustering pattern of part of the 

clusters on an HM plot 
We constructed HM plots for all 11 teams that completed 

their own concept clustering (see Table 4). In the next section, 
we explore the patterns of under- and over-clustering for each 
team. 

:�6��(,����8���,'����7�,/����
4.1 Concepts and Clusters Generated by Human 
Teams 

Overall, the 11 teams we analyzed generated 930 concepts 
out of the 1,154 concepts generated in the class (Table 4). On 
average, each team created 12.6 clusters of concepts. Team 7 
created the most concepts, with 120 concepts generated. Team 
6 generated the least (40). Team 3 created the most concept 
clusters (21). Team 5 created the least concept clusters (9). The 
number of concepts and clusters created by each team is shown 
in Table 4. 

Table 4. Number of concepts and clusters created by each team 
Team # # team concepts 

generated 
# clusters each 
team generated 

Avg. # concepts 
per cluster 

1� 82� 15� 5.5 
2� 70� 17� 4.1 

3� 70� 21� 3.3 

4 103 18 5.7 

5� 100� 9� 11.1 

6� 40� 11� 3.6 

7� 120� 20� 6.0 

8� 80� 10 8.0 

9� 100 8* 20.4 
10� 59 5* 23.8 
11� 106 5* 22.2 

Total�� 930�� 12.6� 10.3 

(*Overlapped cluster means some concepts were put in more than one 
cluster.) 
 

4.2 HM Plots for ME300 Teams 
In Figure 7, we show the overview of the HM plots for the 

11 teams who sufficiently completed their concept clustering 
exercises. We highlight these HM plots here to show how 
various teams exhibited patterns of both under-clustering and 
over-clustering.  

Figure 7 shows that Teams 1 through 8 exhibit a similar 
linear-pattern of the location of circles that display the density 
of concepts in each cluster, where the human and machine 
clusters are grouped in a similar manner. Teams 9 through 11, 
however, show markedly different patterns, as they created 
overlapping clusters where a single concept was clustered into 
several different clusters.  

 
Figure 7 Overview of 11 teams’ HM plots. In the sub plot, the x-axis 
shows the human clusters, the y-axis shows the machine clusters, and 
the size of the circles shows the number of concepts in each cluster.  

For a given HM plot, we define three statistical terms: 
congruency, under-clustering index, and over-clustering index. 
The congruency (represented as a percentage) is the number of 
concepts on the diagonal of the plot divided by all the concepts 
generated by a team. It shows the similarity between machine 
clustering and human clustering. The under-cluster index is the 
maximum number of machine clusters whose concepts fall into 
one human cluster divided by the number of clusters for the 
team. Note that the machine clustering algorithm was set to 
have the same number of clusters as the team generated. The 
over-cluster index is the maximum number of human clusters 
whose concepts fall into one machine cluster divided by the 
number clusters for the team. 

As an example, let us assume that a team generated 13 
concepts and clustered them into 3 groups. Therefore, we 
would create an HM plot with three human clusters and three 
machine clusters. The number of concepts in the HM plot 

�����	
��������

�������	
��������

��

��

�������
������	�	���

�������	
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would simply be denoted as a 3x3 matrix where the rows are 
machine clusters and the columns are human clusters, e.g., 
0 1 2
0 3 0
5 2 0

. The 13 total concepts are spread across the human 

and machine clusters (i.e., 13=5+2+3+1+2). In this case, we 
calculate congruency = 	 #	;YB;Z[\]	1B	^1_`YB_5

#	\Y\_5	;YB;ZB[\]
= abcb(

&c
= 0.77 . 

To understand the degree of under-clustering and over-
clustering, we calculate the under	clustering	index =
max &

c
, c
c
, &
c
= 1  (column-wise maximum spread-out), and 

over	clustering	index = max (
c
, &
c
, (
c
= 0.67  (row-wise 

maximum spread-out). 
Table 5 shows these statistical summaries of the 11 teams’ 

HM plots. For this analysis, we exclude indices of congruency, 
over-, under- clustering of Team 9, 10 and 11 as some concepts 
were included in multiple clusters. If the teams grouped 
individual concept to multiple clusters, no diagonal patterns 
exist.   

The under-cluster column in Table 5 shows the name and 
size of the human cluster whose concepts were grouped into 
most machine clusters. These were the most under-clustered 
and were broken up into the most machine clusters. 

The over-cluster column in Table 5 shows the name and 
size of the machine cluster whose concepts were grouped into 
the most human clusters. Team 5 and Team 7 have high under-
clustering indices, indicating that some human clusters in these 
teams are too big, and can be split into more segments. These 
two teams also have high over-clustering indices, indicating 
that some concepts share similar attributes but are put into 
different human clusters.  

Table 5. Summary of 11 teams’ HM plots: Congruency, indices of 
over-clustering and under-clustering 

Team # Congruency 

Under-
cluster 
Index 

Under-cluster 
Title (size) 

Over-
cluster 
Index 

Over-cluster 
Title  (size) 

1 0.29 0.47 

Leisure& 
entertainment 
(10) 0.6 

Car; driver 
(17) 

2 0.34 0.35 
Attachments 
(16) 0.47 

Vehicle; 
equipment 
(25) 

3 0.39 0.43 Outdoor (12) 0.43 
Game; 
games (21) 

4 0.27 0.37 
Modern wind 
farms (9) 0.68 

Wind; 
device (31) 

5 0.36 0.6 
Cool bottles 
(25) 0.8 Ear; ears (23) 

6 0.38 0.36 
Added feature 
(11) 0.73 

Needles; 
micro (19) 

7 0.29 0.74 
Tensegri-
home (22) 0.84 

Robot; 
robots (42) 

8 0.46 0.5 
New implant 
(16) 0.7 

Fracture; 
needle (20) 

 
To give more details about the HM plot, we consider Team 

1 again as an example (Figure 8). They focused on a project for 

understanding the interface between humans and autonomous 
vehicles, generated 82 concepts and divided them into 14 
categories. They exhibited both patterns of under-clustering and 
over-clustering. Figure 8 shows the HM plot comparing the 
team generated concept clusters and machine generated concept 
clusters. The size of each bubble corresponds to the number of 
concepts within that cluster. 

 
Figure 8 Sample HM Plot of Team1 

See Appendix A for all the HM plots for each team. 
4.2 Example of Under-Clustering Patterns 

Figure 9 shows an overview of the teams’ example patterns 
in under-clustering their concepts. 

 
Figure 9 Overview of under-clustering shown in teams’ HM plots 

To illustrate the under-clustering in detail, we consider 
Team 4 as an example. Team 4 focused on a project for creating 
and implementing aesthetic wind turbines, generated 103 
concepts and divided them into 18 clusters. They created a 
cluster named “Children friendly design” comprised of 12 
concepts (see Figure 10). In the machine labels’ view, the first 
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four concepts in this cluster tends to be about activity, while the 
others emphasize wind devices and energy generators. 

 
Figure 10 Team 4 generated 12 concepts in cluster “Children Friendly 

Designs” which the algorithm broke into six smaller clusters. 
Table 6 shows the concepts labeled by Team 4 as “Children 

friendly designs.” Because the team under-clustered, the 
algorithm broke these concepts down into smaller clusters with 
several different labels. 

Table 6. Example of under-clustering pattern for Team 4 
Concept 
Index 

Concept Name Human Label Machine 
Label 

27 Children's energy 
playground 

Children friendly designs Energy; heat 

29 Corn maze set up Children friendly designs Field; maze 
25 Obstacle course 

owp 
Children friendly designs Obstacle 

course owp 
26 Playground 

sailboat 
Children friendly designs Playground 

sailboat 
21 Hot air balloon 

oscillator 
Children friendly designs Wind; device 

22 Air dancer 
generator 

Children friendly designs Wind; device 

23 Children spinning 
toy design 

Children friendly designs Wind; device 

30 Fancy hat Children friendly designs Wind; device 
31 Propeller cap Children friendly designs Wind; device 
24 Swing set Children friendly designs Wind; 

generator 
28 Teeter totter 

generator  
Children friendly designs Wind; 

generator 
32 Oscillating wind 

sock 
Children friendly designs Wind; 

generator 

4.3 Example of Over-Clustering Patterns 
Likewise, Figure 11 shows an overview of the teams’ 

example patterns in over-clustering their concepts.  

 
Figure 11 Overview of over-clustering shown in teams’ HM plots  

To illustrate the over-clustering in detail, we take Team 3 
as an example. Team 3, focused on a project for making the 
cycling experience safer and more navigable using wearable 
technology, generated 70 concepts and divided them into 21 
clusters. Two of these clusters are “Outside exercise” and 
“Cycling.” The team clustered two concepts (#51 “Hiking 
challenge app” and #56 “Biking challenge app”) into the two 
different clusters of “Outside exercise” and “Cycling”, but the 
machine found that they are both related to app development 
(see Figure 12). This relation happened to be mentioned in the 
concept description, and the machine succeeded in finding that 
pattern. 

 
Figure 12 Team 3 created two clusters “Outside exercise” and 

“Cycling” but the algorithm combined these into one larger cluster. 
As shown in Table 7, the team grouped these two concepts 

into different categories, but the machine saw that they are both 
about app development and grouped them as such. This raises 
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the question as to whether the common feature should be the 
implementation as an app; or should it focus on the different 
experiences associated with outdoor exercising, in general, 
versus cycling, in particular? Clearly there is a divergent 
thinking opportunity to generate more concepts in any of these 
categories. 

Table 7. Example of over-clustering pattern for Team 3 
Concept 
Index 

Concept 
Name 

Description Human 
Label 

Machine 
Label 

51 Hiking 
challenge 
app 

An app that sets 
challenges for nearby 
hikes such as hike to top 
of grizzly peak in x 
amount of time use 
wearables to track 

Outside 
exercise 

App; 
challenge 

56 Biking 
challenge 
app 

Similar to hiking 
challenge app but 
focused on cyclists 

Cycling App; 
challenge 

5 DISCUSSION/CONCLUSION 
In this paper, we attempt to build a framework for concept 

clustering in product development by applying a machine 
learning-based concept clustering tool on natural language 
descriptions of concepts developed by design teams. By 
comparing the machine generated clusters to the human team 
generated clusters, we see patterns of apparent over-clustering 
and under-clustering that may improve team performance.  

Teams who under-cluster may have created too few 
clusters for their concepts, therefore resulting in large and 
unwieldy clusters. These teams might benefit by expanding 
their few clusters into smaller clusters that better represent the 
themes or functionality represented in the concepts. Our 
algorithm highlights areas where teams might consider creating 
more clusters in order to break apart their ideas into more 
specific and descriptive themes. 

Teams who over-cluster, on the other hand, may have 
created too many clusters for their concepts when they could 
have used fewer clusters to give a more accurate representation 
of their concept themes. Thus, these teams might benefit from 
convergent thinking to pare down their many clusters into a 
more parsimonious cluster set. They might use concept merging 
to mix and match similar features or functionalities. Over-
clustering may also indicate opportunity spaces that would 
benefit from further concept generation within each cluster as 
well. In other words, teams might benefit from taking each of 
their small conceptual clusters and generating more concepts in 
systematic ways by expanding the concepts associated with 
each of these clusters.   

6 FUTURE RESEARCH 
This paper outlines preliminary research in developing a 

tool that identifies meaningful patterns in clustering of design 
concepts. Our goal is to develop a machine-learning tool that 
will assist in mediating communication [11] among design team 
members and help them focus in areas that might benefit from 
further concept generation. 

Although we chose to keep the number of machine- and 
human-generated clusters the same in order to produce 
meaningful HM plots, our algorithm does allow varying the 
number of machine-generated clusters over a given set of data. 
We plan on developing guidelines for when reducing or 
increasing the number of machine-generated clusters would be 
of value. In testing our algorithm using a variable number of 
machine clusters, we found that fewer machine-generated 
clusters led to large bubbles and too large number of clusters 
led to bubbles with a single concept. At least on our data set, 
humans seemed to do a reasonable job in setting the number of 
clusters relative to their concept pool. However, we predict 
there may be an advantage in increasing the number of 
machine-generated clusters when the average number of 
concepts per cluster is relatively high (say over 20% of the 
pool). As the goal of concept generation is to generate as many 
concepts as possible, we predict little advantage in reducing the 
number of clusters unless the number concepts per cluster is 
very low (less than 2%). Note, none of the teams we evaluated 
were outside these ranges. Of course, any evaluation on the 
optimal number of clusters must be measured by the value to 
the design team processes. 

Although not trivial, we will explore the possibility of 
using image extraction methods to extend the functionality of 
our method to use the sketch image in the half-sheet template in 
addition to the text in the concept description to add flexibility 
to our method, thus increasing its usefulness for students. 

Our primary future research, however, will focus on 
interventions with product development teams that show 
patterns of over- and/or under-clustering in order to better 
understand how machine learning on clustering could support 
design teams to improve the design process.  Pilot tests with 
student teams in a Spring 2017 new product development class 
(ME 200) – similar to Fall 2016’s ME 300 – showed promising 
results in terms of student response to how they might use the 
HM plots. Two teams (out of 15 teams in the class) volunteered 
to participate in a pilot study. For example, one member of a 
team with a pattern of over-clustering recognized the 
challenges the team faced in clustering: “During the concept 
generation stage, we had the crazy ideas we couldn’t categorize 
which couldn’t fit in the categories. Categories are 
automatically restrictive, so when we had crazy ideas, the 
categories really don’t go together, so we ended up having big 
“others” (or miscellaneous things) which had everything that 
would fit. So I kind of like what has been done [in regards to 
the machine-generated clusters] to ‘others’”.  

A member of the other team that “under-clustered” 
commented: "In terms of concept generation, it might help 
towards the areas you might want to focus on, like the big 
bubbles, or other areas where there is nothing. … we can either 
pick out the best out of the list to pursue, or we can read 
through this and pick out the best part of each and come up 
with one better concept along with the concepts we already 
have. " 

Beyond the concept generation phase, improved clustering 
may also be useful in the convergent concept selection phase of 
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product design to combine features across multiple concepts 
with similar functionality to get an improved design. Concept 
selection methods that build on concept clustering have only 
been lightly explored in the field of product development [18]. 
Thus, future plans for this work will focus on integrating our 
machine-learning model to consider both concept generation 
and selection processes together.  
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APPENDIX A 

HUMAN MACHINE PLOTS FROM 11 STUDENT TEAMS 
: In HM Plots, the x-axis shows the index of human clustering, the y-axis shows the index of machine clustering, and the size of the circles shows the 

number of concepts in each cluster. 
 

Team # HM Plots Description Team # HM Plots Description 
Team 1 
 

 

Team 1 focused on a project for 
understanding the interface 
between humans and autonomous 
vehicles. The team generated 82 
concepts and divided them into 14 
categories.  

Team 7 

 

Team 7 focused on a project for 
integrating innovative robotics with 
educational curricula. The team 
generated 120 concepts and divided 
them into 20 clusters.  

Team 2 

 

Team 2 focused on a project for 
navigating the deep seas with an 
autonomous underwater vehicle. 
The team generated 70 concepts 
and divided them into 17 clusters.  

Team 8 

 

Team 8 focused on a project for 
improving the outcomes of spinal 
surgeries. The team generated 80 
concepts and divided them into 10 
clusters.  

Team 3 

 

Team 3 focused on a project for 
making the cycling experience 
safer more navigable using 
wearable technology. The team 
generated 70 concepts and 
divided them into 21 clusters.  

Team 9 

 

Team 9 focused on a project for 
improving disaster relief with free-
standing robotics. The team 
generated 100 concepts and put 
them into 8 clusters. 

Team 4 

 

Team 4 focused on a project for 
creating and implementing 
aesthetic wind turbines. The team 
generated 103 concepts and 
divided them into 18 clusters.  

Team 10 

 

Team 10 focused on a project for 
novel way to harvest ocean power. 
The team generated 59 concepts and 
put them into 5 clusters. 

Team 5 

 

Team 5 focused on a project for 
improving the delivery of ear 
medication. The team generated 
100 concepts and divided them 
into 9 clusters.  

Team 11 

 

Team 11 focused on a project for 
enhancing theme park experiences 
through improved character 
costumes. The team generated 106 
concepts and put them into 5 
clusters. 

Team 6 

 

Team 6 focused on a project for 
using micro-needle arrays for 
transdermal drug delivery. The 
team generated 40 concepts and 
divided them into 11 clusters.  
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