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Abstract— The purpose of attitude stabilization is to stabilize
a body about an equilibrium point, usually requiring at least
three independent actuations. In practice, however, a control
law for an underactuated system with two actuators becomes
crucial when one of the three actuators fails during operation,
or when the control objective is to stabilize the spin axis
of the body about an arbitrary direction, possibly with a
nonzero spinning velocity. In this work, we develop a feedback
control law that globally and asymptotically achieves spin-axis
stabilization of a rigid body about an arbitrary axis using only
two reaction wheels. For this, a modified version of (z, w)-
parameterization is presented for the purpose of describing
attitude kinematics of a rigid body. We then introduce dynamics
of the body with two reaction wheels and use a feedback
linearization technique to develop a control law with the
goal of achieving spin-axis stabilization of the body. We show
that the developed control law is globally and asymptotically
stable by using Lyapunov’s direct method in conjunction with
LaSalle’s invariance principle. This controller is implemented
in simulation, and results are presented that show its stabilizing
behavior. While the control law presented here is suitable for
general applications, we primarily focus on its application to
the thrust direction regulation of tensegrity hoppers.

I. INTRODUCTION

Attitude stabilization of a rigid body is, in most cases,
done by using gas jet thrusters or reaction wheels. If three
independent torques can be supplied by either mechanism,
the system is controllable and the body can be stabilized
about an equilibrium [1]. Previous research has shown that,
in the case of gas jet thrusters, the body can still be
stabilized about an equilibrium even when less than three
independent torques are supplied, under certain conditions
[1], [2]. While there exists no smooth state feedback law
achieving this with only two gas jet actuators [3], a time-
varying continuous feedback can locally asymptotically and
exponentially stabilize the attitude of the body [4].

In the case of reaction wheels, the system with three
wheels is controllable if three independent torques are
supplied with a certain minimum torque level [1]. When
the angular momentum of a body is zero, a discontinuous
state feedback controller can be developed for the attitude
stabilization of the body [5]. Recently, controllability of an
underactuated satellite with two reaction wheels is analyzed
and control laws are developed for the satellite’s attitude
stabilization for different system configurations [6], [7].

Despite the challenges of the underactuated reaction wheel
systems, they are quite useful in practice due to the simplicity
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in their system architecture. Furthermore, they can effectively
stabilize partial states of the system [2], and spin-axis stabi-
lization using only two reaction wheels has been an important
problem in this regard [8].

The goal of this work is to derive a feedback control law
that stabilizes a revolute motion of a rigid body about an
arbitrary direction using two reaction wheels attached to it.
Specifically, we aim to develop the control law that achieves
two goals: 1) the spin axis of the body is oriented towards
an arbitrary target direction, and 2) the body rotates about
the spin axis only, if its angular momentum is not zero.

A similar problem was discussed in [9], where several
globally asymptotically stable and globally exponentially
stable control laws are developed for the purpose of spin-
axis stabilization of a symmetric spacecraft using two gas
jet actuators. A globally asymptotically stable control law
that achieves spin-axis stabilization of a spacecraft using two
reaction wheels is also presented in [8]. In both works, the
final direction of the spin axis is aligned with a specified
inertial axis when stabilized.

In many practical applications, however, it is desirable to
orient the spin axis of the primary body towards an aribitrary
axis rather than an inertial axis. Consider a spacecraft or a
planetary rover that utilizes an on-board thruster system as its
source of mobility and assume that the thruster nozzle axis
is in the direction of the spin axis of the system. During its
operation, the spacecraft or the rover is occasionally required
to change the orientation of the thruster nozzle such that the
nozzle axis is aligned with the desired thrust direction. In
such cases, however, it is unlikely that the desired thrust
direction is parallel to an inertial axis.

An example case of this would be the problem of reorient-
ing a thruster system used for hopping of tensegrity robots.
Tensegrity robots are built from tensegrity structures that are
composed of axially loaded compression elements suspended
in a network of tensional elements [10]. The robots are inher-
ently lightweight and naturally compliant, and recently they
have been envisioned for planetary exploration rovers [11],
[12], [13], [14], [15], [16], [17]. The authors have proposed
to use cold gas thrusters to enable their hopping motions
for traveling long distances and showed that the regulation
of thrust direction is necessary in order to reduce wasting
propellant used in moving towards undesirable directions
[15]. Furthermore, the desired thrust direction may change in
between hops and in such cases the control needs to reorient
the nozzle axis to match the new target direction. Hence the
need for a more generalized control law arises; the law that
can stabilize the nozzle axis of the thruster system towards



an arbitrary direction. In particular, use of reaction wheels
is preferrable than gas jet thrusters for the thrust regulation
of hopping tensegrity robots because it allows the robots to
spend propellant towards hopping only and thus increases
their maximum travel distance.

To this end, we improve upon the approach taken in
[8], [9] by modifying the kinematics description of a body,
and then creating a controller based on this description. In
Sect. II, we introduce a modified (z, w)-parameterization
[18] as a way of describing the rotational kinematics of
a body. We then introduce dynamics of a rigid body with
two reaction wheels attached along the body’s principal axes
in Sect. III. We use a feedback linearization technique in
Sect. IV to develop the desired control law and prove its
stability via Lyapunov’s direct method in conjunction with
LaSalle’s invariance principle. We also simulate the control
on a thruster system of hopping tensegrity robots and show
the controller’s stabilizing behavior. Lastly, conclusion is
provided in Sect. V.

II. ATTITUDE KINEMATICS

In this section, we derive a set of kinematic equations
describing the attitude of a rigid body, which will later
be used for controller design in Sect. IV. The derivation
closely follows [18] and is based on (z, w)-parameterization
therein. However, we modify it to include the information of
the arbitrary target direction and present a new formulation
extending the prior work. This modification is necessary in
order to develop the controller that stabilizes the spin axis
of the body about an arbitrary direction.

A. Parameterization of Rotations
Let the two sets of orthonormal right-handed basis vec-

tors for the inertial and body-fixed reference frames be
{E1,E2,E3} and {e1, e2, e3}, respectively. Then, there ex-
ists a rotation matrix R ∈ SO(3) that describes the relative
orientation of the two frames. Using matrix notation, this
relationship can be written ase1e2

e3

 = R

E1

E2

E3

 . (1)

We then decompose the matrix R into three sub-rotations,

R = R3(z)R2(w)R1, (2)

where R1,R2(w),R3(z) ∈ SO(3). Note that the two ro-
tations R2(w) and R3(z) are parameterized by w and z,
which are functions of time. R1 is not parameterized because
we assume this matrix is constant in this work, as will be
discussed later.

Furthermore, we define two additional sets of orthonormal
right-handed basis vectors {t1, t2, t3} and {e′1, e′2, e′3} to
describe intermediate reference frames during the rotation
R (Fig. 1). The relationships between the rotation matrices
and the basis vectors are given ast1t2

t3

 = R1

E1

E2

E3

 , (3)

(a) R1 (b) R2(w)

(c) R3(z) (d) R = R3(z)R2(w)R1

Fig. 1. Rotations and basis vectors used to describe attitude kinematics of a
rigid body. The rotation R between the inertial frame and body-fixed frame
consists of three sub-rotations. (a) The first rotation rotates {E1,E2,E3}
to {t1, t2, t3}. t3 is the target direction about which the spin axis of
the body will be stabilized. (b) The second rotation rotates {t1, t2, t3} to
{e′1, e′2, e′3}. (c) The third rotation is about the axis e′3 = e3, and it rotates
{e′1, e′2, e′3} to {e1, e2, e3}. (d) The overall rotation R is a combination
of R1, R2(w) and R3(z).

e′1e′2
e′3

 = R2(w)

t1t2
t3

 , (4)

e1e2
e3

 = R3(z)

e′1e′2
e′3

 . (5)

We let t3 be the direction about which the spin axis of the
body will be stabilized. Letting e3 represent the current spin
axis of the rigid body, the control objective will then be to
align t3 and e3. Moreover, we assume the target direction t3
is known a priori and time independent in this work. Then,
the first rotation R1 is not an arbitrary rotation, but rather it
is a constant rotation that rotates the third inertial axis E3

to t3. As a result, R1 is a constant matrix. From [18], it is
known that such a rotation has the form of

R1 =

k3 +
k2
2

1+k3
− k1k2

1+k3
k1

− k1k2

1+k3
k3 +

k2
1

1+k3
k2

−k1 −k2 k3

 , (6)

with the constants k1, k2 and k3 satisfying the constraint

k21 + k22 + k23 = 1. (7)

Next, the second rotation R2(w) rotates t3 to e′3, which
is identical to e3 if we let e′3 to be the rotation axis of the
third rotation R3(z). As a result, the second rotation R2(w)



rotates t3 to e3. R2(w) has a form similar to R1 and can
be written as

R2(w) =

c+ b2

1+c − ab
1+c a

− ab
1+c c+ a2

1+c b

−a −b c

 , (8)

with the parameters a, b and c satisfying the constraint

a2 + b2 + c2 = 1. (9)

Unlike k1, k2 and k3, notice that a, b and c are functions of
time because their values change as the body rotates. By
using a stereographic projection, the constraint (9) can be
incorporated into (8) [18]. If we define a complex variable
w = w1 + iw2 as

w =
b− ia
1 + c

, (10)

R2(w) can be re-written as

R2(w) =
1

1 + w2
1 + w2

2

×1 + w2
1 − w2

2 2w1w2 −2w2

2w1w2 1− w2
1 + w2

2 2w1

2w2 −2w1 1− w2
1 − w2

2

 . (11)

The final rotation R3(z) is the rotation about e3 = e′3 and
is given by

R3(z) =

 cos(z) sin(z) 0
− sin(z) cos(z) 0

0 0 1

 . (12)

B. Kinematic Equations

By substituting (6), (8) and (12) into (2), we can find the
expression of R in terms of k1, k2, k3, a, b, c and z. Although
we will not write the full expression of R here, we do note
that the third row of R is independent of the parameter z.
Consider the inverse rotation of R and define

R̃ = R−1 = RT. (13)

If we denote R(i,∗) as the i-th row of R, and R̃(∗,j) as the
j-th column of R̃, we have

R̃(∗,3) = [R(3,∗)]
T = A

ab
c

 , (14)

where we introduced a constant matrix A defined as

A =

−(k3 +
k2
2

1+k3
) k1k2

1+k3
−k1

k1k2

1+k3
−(k3 +

k2
1

1+k3
) −k2

−k1 −k2 k3

 . (15)

Notice that A is an involutory matrix and A−1 = A.
Furthermore, let us introduce two angular velocities ω

and ω̃. ω is the angular velocity vector of the body frame
{e1, e2, e3} with respect to the inertial frame {E1,E2,E3},
whereas ω̃ is the angular velocity vector of the inertial frame

{E1,E2,E3} with respect to the body frame {e1, e2, e3}.
We write ω and ω̃ as

ω = ω1e1 + ω2e2 + ω3e3

= ωE
1 E1 + ωE

2 E2 + ωE
3 E3,

(16)

and
ω̃ = ω̃1E1 + ω̃2E2 + ω̃3E3. (17)

By definition, ω and ω̃ has the relationship

ω̃ = −ω, (18)

in the inertial frame. In terms of components, this can be
re-written as ω̃1

ω̃2

ω̃3

 = −

ωE
1

ωE
2

ωE
3

 = −RT

ω1

ω2

ω3

 . (19)

With the help of skew-symmetric matrices

S(ω) =

 0 ω3 −ω2

−ω3 0 ω1

ω2 −ω1 0

 , (20)

and

S(ω̃) =

 0 ω̃3 −ω̃2

−ω̃3 0 ω̃1

ω̃2 −ω̃1 0

 , (21)

the time derivatives of the rotation matrices R and R̃ are
related to the angular velocities ω and ω̃ as

Ṙ = S(ω)R, (22)

and
˙̃
R = S(ω̃)R̃. (23)

Moreover, if we consider only the third column of ˙̃
R in (23),

˙̃
R(∗,3) = S(ω̃)R̃(∗,3), (24)

and by substituting (14) into (24), we obtainȧḃ
ċ

 = AS(ω̃)A

ab
c

 . (25)

After some algebra, it turns out that the matrix AS(ω̃)A is
also skew-symmetric and has the form of

AS(ω̃)A =

 0 η̃3 −η̃2
−η̃3 0 η̃1
η̃2 −η̃1 0

 = S(η̃), (26)

where

η̃ =

η̃1η̃2
η̃3

 = A

ω̃1

ω̃2

ω̃3

 = −ART

ω1

ω2

ω3

 . (27)

We used (19) to obtain the last equality in (27).
In [18], it was shown that the system of differential equa-

tions in (25) can be transformed into two scalar differential



equations by using the complex projection variable w as
defined in (10):

ẇ1 = w2η̃3 + w1w2η̃2 +
η̃1
2

(1 + w2
1 − w2

2), (28)

ẇ2 = −w1η̃3 + w1w2η̃1 +
η̃2
2

(1− w2
1 + w2

2). (29)

By substituting (27) into (28) and (29), the above differential
equations can be re-written as

ẇ1 =
1

2
(1 + w2

1 + w2
2)(ω1 cos(z)− ω2 sin(z)), (30)

ẇ2 =
1

2
(1 + w2

1 + w2
2)(ω1 sin(z) + ω2 cos(z)). (31)

The differential equation for the z-rotation is obtained by
equating the first elements of both sides of (22) and using
(30) and (31). That is,

ż = ω3 + (ω2w1 − ω1w2) cos(z) + (ω1w1 + ω2w2) sin(z).
(32)

The new kinematic equations (30)–(32) describe the atti-
tude of the body with respect to the target orientation.

C. Remarks

In its original form, the (z, w)-parameterization decom-
poses a rotation between the inertial and body-fixed reference
frames into two successive rotations, namely, z- and w-
rotations, and decouples the kinematic equation of w-rotation
from that of z-rotation. In this work, we have modified the
parameterization to explicitly include the target direction
t3 by adding a new rotation R1. Because of this added
rotation, the decoupling of w- and z-rotations is removed,
but the resultant kinematic equations are yet simple enough
to develop the desired spin-axis stabilization control law.

When we decompose R, we take w-rotation before z-
rotation, which is the reversed order of what is presented
in [18]. This order of rotations is chosen because it results
in the third row of R, or the third column of R̃, being
independent of z as provided in (14), and allows us to derive
the differential kinematic equations (25), (30) and (31).

The representation has a singularity when a = b = 0 and
c = −1, originating from the stereographic projection (10).
In this case, e3 = −t3 and the spin axis of the body is
pointing exactly the opposite of the target direction. This
singularity case may be overcome by first attempting to
stabilize e3 about some direction t′3 6= t3. Once this is done,
the control can then stabilize e3 = t′3 to t3. We provide a
simulation of this singular case in Sect. IV-C.

III. DYNAMICS OF RIGID BODY WITH TWO REACTION
WHEELS

Let the basis vectors {e1, e2, e3} be chosen to be coinci-
dent with the principal axes of the primary rigid body. We
assume that there are two identical axis-symmetric reaction
wheels attached to this rigid body, and their rotation axes are
aligned with e1 and e2. It is well-known that the dynamics
of such a system are given by (see, for example, [8], [19])

(I1 − Ja)ω̇1 = (I2 − I3)ω2ω3 + h2ω3 − u1, (33)

(I2 − Ja)ω̇2 = (I3 − I1)ω3ω1 − h1ω3 − u2, (34)

I3ω̇3 = (I1 − I2)ω1ω2 − h2ω1 + h1ω2, (35)

ḣ1 = −Jaω̇1 + u1, (36)

ḣ2 = −Jaω̇2 + u2. (37)

In (33)–(37), Ii is the moment of inertia of the system,
including the rigid body and the reaction wheels, along ei
direction. Specifically, if Ibi represents the moment of inertia
of the rigid body in ei direction, and Ja and Jt represent
the axial and transverse moments of inertia of the wheels,
respectively, then

I1,2 = Ib1,2 + Ja + Jt, I3 = Ib3 + 2Jt. (38)

Notice that Ii − Ja > 0 for i = 1, 2 in (33) and (34). ωj is
the component of the angular velocity of the rigid body in
ej direction, observed in the body reference frame, as given
in (16). If we let Ωk (k = 1, 2) represent the relative angular
speed of the k-th wheel with respect to the rigid body, then
hk = JaΩk is the relative angular momentum of the k-th
wheel. Finally, ul (l = 1, 2) is the input control torque to
the wheel l. As a reaction to this input, −ul is also applied
to the primary body.

IV. CONTROLS FOR SPIN-AXIS STABILIZATION

A. Control Objective and Equilibrium

We want the spin axis of the primary body e3 to be aligned
with the known target direction t3. From (4) and (5), we find
that this goal is achieved when R2(w) = I, where I is an
identity matrix. As a consequence, we want to converge to
the state where a∗ = b∗ = 0 and c∗ = 1, or equivalently,
w∗1 = w∗2 = 0, where the superscript ∗ is used to denote
the converged values. At convergence, ẇ∗1 = ẇ∗2 = 0, which
implies that ω∗1 = ω∗2 = 0, and thus ω̇∗1 = ω̇∗2 = 0, as can be
seen from (30) and (31). Additionally, (32) and (35) say that
ż∗ = ω∗3 and ω̇∗3 = 0, that is, the primary body rotates about
e3 = t3 at a constant angular speed of ω∗3 . Summarizing,
for the purpose of achieving the spin-axis stabilization, our
goal for control is to make partial states w1, w2, ω1 and ω2

converge to zero. When the system arrives at this state, (33),
(34), (36) and (37) are reduced to

u∗1 = ḣ∗1 = h∗2ω
∗
3 , (39)

u∗2 = ḣ∗2 = −h∗1ω∗3 . (40)

From (39) and (40), it follows that the relative angular
momenta of the wheels and the input control torques at
convergence are sinusoidal functions.

B. Controller Design

We closely follow [8] for our controller design. Consider
the following control law

u1 = (I2 − I3)ω2ω3 + h2ω3 + v1, (41)
u2 = (I3 − I1)ω3ω1 − h1ω3 + v2, (42)



where the synthetic control inputs v1 and v2 are defined as

v1 = κ1 [w1 cos(z) + w2 sin(z)] + κ2ω1, (43)
v2 = κ1 [w2 cos(z)− w1 sin(z)] + κ2ω2, (44)

with positive constant gains κ1 and κ2. We now show that the
above control law makes the system (30)–(37) to converge
to the equilibrium state discussed in Sect. IV-A:

w∗1 = w∗2 = ω∗1 = ω∗2 = 0. (45)

Proof: Consider the following positive definite Lya-
punov candidate function from [8]:

V =
1

2
(I1−Ja)ω2

1+
1

2
(I2−Ja)ω2

2+κ1 ln(1+w2
1+w2

2). (46)

By taking time derivative of V and substituting (30), (31),
(33) and (34) together with the control law (41)–(44), we
obtain

V̇ = −κ2(ω2
1 + ω2

2), (47)

which is negative semi-definite. Since V is decrescent and
radially unbounded, the equilibrium (45) is globally stable
but it is not guaranteed to be asymptotically stable [20].

Thus, the asymptotic stability of the equilibrium state (45)
is proved by LaSalle’s invariance principle [20], [21]. In (47),
V̇ = 0 implies that ω1 = ω2 = 0 and thus ω̇1 = ω̇2 = 0,
provided that this corresponds to the equilibrium. By sub-
stituting this, together with (41) and (42), into (33) and
(34), we obtain v1 = v2 = 0. From (43) and (44), we notice
that this implies w1 = w2 = 0. Therefore, the only element
in the invariance set satisfying V̇ = 0 is the equilibrium
(45), and we conclude that this equilibrium is globally and
asymptotically stable.

C. Simulations

The controller is simulated on the system consisting of
a cubic rigid body and two reaction wheels attached to the
body, as depicted in Fig. 2. Such a system may represent a
thruster system used for hopping of tensegrity robots. In that
case, the cubic rigid body would be a package of thruster
system components such as compressed propellant tanks,
pressure valves, thruster nozzles, etc.

In the authors’ previous work [15], we have presented a
tensegrity robot that can hop using a cold gas thruster. The
goals of this robot are to travel over a 1 km distance on
the Moon’s surface and to safely deliver a 1 kg payload.
The total weight of this robot is limited to 10 kg, including
the payload, structural components and thruster system,
in order to reduce the mission cost. These requirements
were specified by NASA for our research program and are
intended to facilitate low-cost surveillance missions launched
as a secondary payload on a stationary lander.

For this robot, it is estimated that the cubic rigid body
will have a width of 0.25 m and a total mass of 5 kg in
order to carry sufficient amount of propellant required for
the mission. Furthermore, we assume that the wheels are
made of aluminum and each wheel has a radius of 0.077 m
and thickness of 0.005 m such that its total mass is 0.25 kg.

Fig. 2. A cubic rigid body with two identical axis-symmetric reaction
wheels. The rotation axes of the wheels are aligned with e1 and e2.

Under these assumptions, if the body and the wheels have
a uniform mass distribution, I1 = I2 = 0.053 kg m2, I3 =
0.052 kg m2 and Ja = 0.00037 kg m2.

Let us consider the case when the initial attitude of the
rigid body is such that e1 = E2, e2 = E3 and e3 = E1.
That is,

R0 =

0 1 0
0 0 1
1 0 0

 , (48)

where the superscript 0 represents the initial condition.
Furthermore, let the target thrust direction be given by
t3 = 1√

2
(E2 + E3), and therefore

R1 =

1 0 0
0 1√

2
− 1√

2

0 1√
2

1√
2

 . (49)

If the E1–E2 plane represents the ground surface, then t3
would make 45◦ angle with the ground, a desirable state for
a parabolic hopping trajectory.

The initial attitude parameters w0 = w0
1 + iw0

2 and z0 can
be obtained from R0

3R
0
2 = R3(z0)R2(w0) = R0RT

1 . From
(8) and (12), notice that the third row of R3(z0)R2(w0) is[

R0
3R

0
2

]
(3,∗) =

[
−a0 − b0 c0

]
. (50)

Using (10),

w0
1 =

b0

1 + c0
, w0

2 = − a0

1 + c0
. (51)

For our example, a0 = −1 and b0 = c0 = 0, which results
in w0

1 = 0 and w0
2 = 1. The parameter z0 is obtained from

tan(z0) =

[
R0

3R
0
2

]
(1,2)
−
[
R0

3R
0
2

]
(2,1)

[R0
3R

0
2](1,1) + [R0

3R
0
2](2,2)

, (52)

which gives z0 = 135◦ in our case.
Lastly, we assume that the initial angular veloci-

ties of the body are ω0
1 = 0.8 rad/s, ω0

2 = 0.5 rad/s and
ω0
3 = −0.3 rad/s, and that the initial relative angular veloci-

ties of the wheels with respect to the primary body are zero,
i.e., h01 = h02 = 0. These conditions are chosen as an example
motion of the hopping tensegrity robot.
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and ω2 converge to zero while ω3 converges to a nonzero constant value.
This implies that the body rotates about its spin axis at the equilibrium.

The simulation results with these initial conditions and
control gains of κ1 = 0.5 and κ2 = 0.1 are presented in
Figs. 3–7. In Figs. 3 and 4, we see that the system arrives at
the equilibrium (45) at around t = 6 s by the control action.
Moreover, at this equilibrium, the body rotates about its spin
axis at a constant angular speed ω∗3 . Because of this, the angle
z increases linearly, but this nonzero rotation rate around the
spin axis does not affect the thrust direction if the nozzle axis
is aligned with the body spin axis. Figure 5 shows that the
absolute angle between e3 and t3 converges to zero, meaning
that they are aligned together as desired, at the equilibrium.
As discussed in Sect. IV-A, the relative angular momenta of
the wheels (h1 and h2) and the input control torques (u1 and
u2) become sinusoidal functions of time at the equilibrium
(Figs. 6 and 7). On the other hand, both synthetic control
inputs v1 and v2 converge to zero (Fig. 7). Figure 6 shows
that the total angular momentum of the system given by

H =
√

(I1ω1 + h1)2 + (I2ω2 + h2)2 + (I3ω3)2, (53)

is conserved because no external torques were applied to the
system.

In the above simulation, although the system started with
a quite large angular displacement from the target direction
and nonzero angular velocities, it quickly converged to the
desired equilibrium. The required input torques are small,
and thus the control can be implemented with low-torque and
potentially lightweight actuators. This makes the control law
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Fig. 5. Change of angle between the body spin axis e3 and target axis t3
over time. The angle converges to zero, meaning that e3 and t3 are aligned
at the equilibrium.
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Fig. 6. Change of relative angular momenta of the wheels with respect to
the primary body over time. At the equilibrium, both h1 and h2 become
sinusoidal functions of time. The total angular momentum of the system,
H , is conserved.
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Fig. 7. Change of control inputs over time. Both synthetic control inputs
v1 and v2 converge to zero. The input control torques u1 and u2 become
sinusoidal functions of time at the equilibrium.

particularly promising for hopping tensegrity robots where
the total weight of the system is a critical factor.

An interesting case arises when both the body and the
wheels are not rotating initially, that is, when the total
angular momentum H of the system is initially zero. Be-
cause the total angular momentum is conserved, it should
remain at zero when the equilibrium state is reached. As
a result, h∗1 = h∗2 = ω∗3 = 0, which implies that the body
and the wheels become stationary at the equilibrium without
spinning. This observation was also discussed in [2]. For
a tensegrity hopper, this could be the case of reorienting
the thruster nozzle in mid-air, assuming that the hopper was
launched in such a way that its angular velocities are zero
and the reaction wheels do not rotate. We present simulation
of this case in the next.
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Fig. 8. Change of attitude parameters over time under control action for the
singular case. w1 first converges to zero at around t = 6 and then again to
zero at around t = 12. The first convergence corresponds to the stabilization
of the body spin axis e3 about t′3 = E2, and the next one about t3 = −E3.
Unlike the first example, w2 and z remain zero throughout. Because the
initial angular momentum of the whole system is zero, the body and the
wheels do not rotate at the equilibrium.

Figures 8–12 show another simulation results, with the
same physical parameters and control gains as in the previous
simulation, where the singularity discussed in Sect. II-C
arises. That is, the target axis is exactly at the opposite
direction of the current body spin axis. Specifically, in this
simulation, we assumed the principal axes of the primary
body are initially aligned with the inertial axes (ej = Ej ,
j = 1, 2, 3) and our target frame is given by t1 = E1,
t2 = −E2 and t3 = −E3. This target frame is easily
achieved by rotating the inertial frame by 180◦ about E1.
However, our kinematics description results in a0 = b0 = 0
and c0 = −1 and thus the target configuration is singular.
To overcome this singularity, we take a two-step process
as suggested in Sect. II-C: 1) We first stabilize e3 about
t′3 = E2 by rotating the body −90◦ about E1, and then 2)
stabilize e3 = t′3 about t3 = −E3 by further rotating the
body −90◦ about E1. Recall that we further assumed the
initial angular velocities and angular momenta of the system
are equal to zero in this simulation. As a consequence,
the total angular momentum of the system remains zero
(Fig. 11), and the angular velocities and attitude parameters
converge to zero at the equilibrium (Figs. 8 and 9).

V. CONCLUSION AND FUTURE RESEARCH

We presented a control law achieving the spin-axis stabi-
lization of a rigid body about an arbitrary direction using two
reaction wheels. Specifically, our control law successfully
achieved two goals: 1) it oriented the spin axis of the body
to an arbitrary direction, and 2) it made the body rotate about
the spin axis only, if the angular momentum of the system
is not zero. The control law was developed using a feedback
linearization technique and it was shown that the control
is globally and asymptotically stable about the equilibrium
(45) by using Lyapunov’s direct method in conjunction with
LaSalle’s invariance principle. In addition, the new set of
differential kinematic equations that are based on the (z, w)-
parameterization is derived. The new formulation explicitly
considers the arbitrary target direction about which the spin
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Fig. 9. Change of angular velocities over time under control action for
the singular case. ω1 first converges to zero at around t = 6 and then
again to zero at around t = 12. The first convergence corresponds to the
stabilization of the body spin axis e3 about t′3 = E2, and the next one
about t3 = −E3. ω2 and ω3 remain zero throughout. Because the initial
angular momentum of the whole system is zero, the body and the wheels
do not rotate at the equilibrium.
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Fig. 10. Change of angle between the body spin axis e3 and the final target
axis t3 = −E3 over time for the singular case. The angle converges to zero
at around t = 12, meaning that e3 and t3 are aligned at the equilibrium.
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to the primary body over time for the singular case. h1 first converges to
zero at around t = 6 and then again to zero at around t = 12. The first
convergence corresponds to the stabilization of the body spin axis e3 about
t′3 = E2, and the next one about t3 = −E3. h2 remains zero throughout.
The total angular momentum of the system, H , is conserved and is equal
to zero.
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Fig. 12. Change of control inputs over time for the singular case. Both
v1 and u1 first converge to zero at around t = 6 and then again to zero
at around t = 12. The first convergence corresponds to the stabilization of
the body spin axis e3 about t′3 = E2, and the next one about t3 = −E3.
v2 and u2 remain zero throughout.

axis of the body is stabilized, and describes the attitude of
the body with respect to the target orientation.

We also demonstrated the stabilizing behavior of the
controller by simulating it on a thruster system of hopping
tensegrity robots. It was shown that our control law can
quickly orient the thruster nozzle to a desired target direction
using lightweight wheels and small control torques that can
potentially be provided by lightweight actuators. We further
simulated the strategy to overcome the singularity that arises
from the stereographic projection.

In this work, it was assumed that the perfect knowledge
of the states is provided when developing and simulating
the controller. In practice, however, this information may
not be available and there may exist signal noises, model
uncertainties and external disturbances that challenge the
controller. Our future research will focus on the development
of a robust controller that performs well even under these
unfavorable conditions.
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