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Abstract— Studies show that if we retrofit all the lighting
systems in the buildings of California with dimming ballasts, then
it would be possible to obtain a 450 MW of regulation, 2.5 GW of
nonspinning reserve, and 380 MW of contingency reserve from
participation of lighting loads in the energy market. However, in
order to guarantee participation, it will be important to monitor
and model lighting demand and supply in buildings. To this end,
wireless sensor and actuator networks have proven to bear a great
potential for personalized intelligent lighting with reduced energy
use at 50%–70%. Closed-loop control of these lighting systems
relies upon instantaneous and dense sensing. Such systems can be
expensive to install and commission. In this paper, we present a
sensor-based intelligent lighting system for future grid-integrated
buildings. The system is intended to guarantee participation of
lighting loads in the energy market, based on predictive models
of indoor light distribution, developed using sparse sensing.
We deployed ∼60% fewer sensors compared with state-of-art
systems using one photosensor per luminaire. The sensor modules
contained small solar panels that were powered by ambient light.
Reduction in sensor deployments is achieved using piecewise
linear predictive models of indoor light, discretized by clustering
for sky conditions and sun positions. Day-ahead daylight is
predicted from forecasts of temperature, humidity, and cloud
cover. With two weeks of daylight and artificial light training
data acquired at the sustainability base at NASA Ames, our
model was able to predict the illuminance at seven monitored
workstations with 80%–95% accuracy. Moreover, our support
vector regression model was able to predict day-ahead daylight
at ∼92% accuracy.

Index Terms— Clustering, daylight harvesting, inverse model,
support vector regression, wireless sensor network.
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I. INTRODUCTION

IBM’s Instrumenting the Planet report [1] highlights the
importance of wireless sensor-actuator networks and dis-

tributed analytics in the life cycle management of natural
resources and technical infrastructures in agriculture, hydro-
logical systems, land use, power grids, transportation systems,
manufacturing and many more applications. The researchers
introduced Real-World-Aware (RWA) systems, which extract
information about the state of the real world from raw data
aggregated from disparate sources and use it to complete the
loop through automated and adaptive control. Cyber-physical
systems are becoming pervasive in large infrastructures and are
viewed as essential components of grid-connected buildings.
Expert studies [2] show that if we retrofit all the lighting
systems in the buildings of California with dimming ballasts,
then it would be possible to obtain 450 MW of regulation,
2.5 GW of non-spinning reserve and 380 MW of contingency
reserve from participation of lighting loads in the energy mar-
ket. In some cities, such as Amsterdam, dimmable street LED’s
are integrated within their smart grid [3]. Ceriotti et al. [4]
proposed wireless-enabled closed loop control for lighting in
road tunnels. The advantage of controlling lighting loads is that
they can be controlled to any intensity with dimming ballasts,
unlike HVAC systems. Furthermore, low latency makes the
dimmable lights competitive with generators, which have over
one minute response time.

Wen et al. (2011) [5] found that closed loop control of
building systems enabled by wireless sensor and actuator
networks (WSANs) result in 28% cooling energy and
40% light energy savings in office buildings. Commercial
lighting is one of the largest contributors to commercial
energy consumption. Intelligent lighting forms an easy and
low-cost avenue to energy conservation. According to the
U.S. DOE Energy yearbook in 2010 [6] the maximum
electricity consumption in commercial buildings (13.6%)
is attributed to lighting. Our prior work has demonstrated
that even without daylight harvesting (controlling artificial
lights based on daylight availability), 50% of lighting energy
can be saved from personalized control of wireless-enabled
individually- dimmable luminaires. An additional 20% of
energy savings could be achieved with daylight harvesting
according to our simulation results [7]–[9]. Furthermore, there
have been considerable improvements in lighting and shading
controls [10] and in daylight harvesting systems [11], [12].
Singhvi et al. (2005) [13] developed a centralized lighting
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system to increase user comfort and reduce energy costs by
using a WSN. Lin et al. (2005) [14] proposed a decentralized
algorithm for WSAN-enabled optimal lighting control.

In spite of the growing impetus in lighting control research
and some successful pilot projects, the actual adoption of
intelligent lighting control systems in commercial buildings
has been very limited. As of 2010, 70% of the US national
stock of commercial buildings had no lighting controls for
energy efficiency [15]. Some of the reasons include general
lack of encouraging energy savings from expensive commis-
sioning of lighting systems, particularly when usability was
not considered appropriately. Rude [16] found that 50% of
the intelligent lighting control systems they studied had been
deactivated by the users and the remaining 50% operated at
50% of target performance. System usability problems include
lack of interoperability between lighting, shading and building
automation system drivers, software and databases.

II. CONTRIBUTIONS

In this paper we present an intelligent lighting system for
future grid-integrated buildings with the following contribu-
tions:

1. Development of computationally inexpensive and data-
driven predictive indoor light models for intelligent
lighting control and smart grid integration.

2. Approximately 60% reduced sensing compared to state-
of-art closed loop lighting control systems.

3. Design, development and testing of indoor light powered
light sensor platform.

Our research is motivated by the driving need to increase
adoption of wireless enabled intelligent lighting systems for
building to grid integration and draws upon the expanding
field of research in optimal sensing systems. The state-of-art
commercial lighting control systems typically use one photo-
sensor per luminaire or even 2-3 photo-sensors (to allow for
redundancy), as shown in Wen & Agogino [7]. We demon-
strated the proposed WSN platform could accurately estimate
indoor light on work surfaces and perform day-ahead pre-
dictions for demand response with approximately 40% few
sensors compared to these state-of-the-art commercial systems.

Reduced sensing is achieved by replacing many of the actual
wireless sensor platforms by sensor inverse models, thereby
reducing the cost of sensor deployments. These models are
point estimates of indoor light in the form of clustered linear
functions of measured daylight and artificial lights. Clustering
captures the potential changes in spatial correlations in the
light field, resulting from the physics of direct and diffuse
light-distribution in space under varying sky conditions.

The advantage of mounting photo-sensors on the luminaires
is that power supply to the sensing unit comes from the same
circuit as the luminaire. However, this mounting position may
lead to incorrect estimation of illuminance on the workplane
due to large field of view of the photo-sensor. Our system cir-
cumvents this limitation by positioning photo-sensors on a few
critical workstations supported by our adaptive regressor selec-
tion algorithm. The sensing units have miniature photovoltaic
panels for harnessing power from indoor light. As part of our
ongoing research on information-centric smart building control

systems, we deployed and tested the integrated hardware-
software platform at the Sustainability Base at NASA Ames
Research Center.

III. RELATED WORK

Maasoumy et al. (2013) [17] co-designed a coupled HVAC
control algorithm and a temperature sensor system, optimized
for energy and infrastructure cost, while meeting the occupant
comfort needs. They observed that predictive control algo-
rithms for optimal comfort and cost performances should be
tailored differently to take into account sensor accuracy (rep-
resented by sensor position and number). In terms of temporal
data density, Wen (2008) [9] and Singhvi et al. (2005) [13]
demonstrated that sampling rates could be varied without com-
promising the control system performance, based on whether
the light field is static or dynamic. Hence, reducing the
number of sensors comes with an accuracy penalty. This can
be mitigated by optimally selecting the spatial and temporal
sampling frequency that adequately covers the indoor light
field and maintains desired information accuracy. It is also
important to define the desired information accuracy for user
satisfaction and energy savings.

Many of distributed sensing applications, in particular
for large infrastructures, face resource scarcity for which
optimal sensor placement solutions have been proposed
by researchers [18]–[20]. Most of these problems involve
reverse engineering, where sensing parameters like position
and sampling rate are changed based on feedback about
the field. Such methods have been generalized for a wide
range of applications. For example, near-optimal sensor
placement algorithms using mutual information (MI) criteria
assumes a Gaussian Process model of spatial distribution of
environmental variables. This is essentially a sub-set selection
problem (from all possible sensor locations) that maximizes
the MI between the actual environmental variables (hidden
variables) and the observed sensor readings. This method uses
sub-modularity of MI criteria for obtaining at least a ∼ 63%
approximation of the optimal solution. One advantage of MI
is that it can address non-linearity in spatial relationships
of physical quantities. This algorithm was also validated for
active sensing (e.g., changing sampling rates for battery life)
as part of an intelligent lighting system.

Compressed sensing [21] is another alternative approach
for reduced sensor deployment. It leverages the sparsity or
redundancy of measured variables across the field, but requires
prior knowledge of sparsity and randomized measurements.
Compressed sensing has been mostly tested in audio and image
acquisition. Sandhu et al. (2004) [22] proposed a Multi-Agent
System (MAS) for distributed data processing and Influence
Diagram (Bayes net)-based decision-making in closed loop
lighting control. The main goal was to achieve flexibility of
distributed computation. Sensor placement problems can be
cast into the MAS framework, in which individual sensors are
modeled as agents with a supervisory algorithm to minimize
the average prediction error across the spatially distributed
agents.

A. Guillemin (2003) [23] and D. Lindelhof (2007) [24]
have proposed and validated a predictive model of light
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that assumed a linear relationship between vertical facade
illuminance and indoor horizontal illuminance. Lindelhof [24]
found that his linear predictive model resulted in a standard
deviation of 416 lux (close to standard illuminance in offices).
The same authors also found that performance of the predictive
model varied with exposure to direct sunlight. Direct sunlight
falling on a sensor is primarily responsible for the non-
linear relationship between the sensed facade light and the
sunlight distributed indoors. Ongoing research at the Lawrence
Berkeley National Laboratory has shown that it is possible
to predict the indoor light distribution in space as a linear
function of one or two photo-sensor readings with reasonable
accuracy in diffuse daylight conditions, for example, when
blinds are drawn. But such correlations change rapidly when
direct sun enters the space. Hence, it is important to train
different models for direct and indirect sunlight conditions.
In order to account for the temporal nature of the daylight dis-
tribution in space, we proposed a piecewise linear relationship
between artificial and natural light sources and the illuminance
measured at a workstation, discretized by one degree solar
altitude for daylight approximation in our prior research [25].
We refer to this algorithm as the Sun Position-Based Model.

In terms of hardware related work on WSN enabled
intelligent lighting system, Pandharipande et al. (2013) [26]
proposed a wireless sensing system and a closed-loop illumi-
nance feedback control algorithm for indoor lighting control.
They showed that the wireless sensing system consisting of
low-power, light energy harvesting sensor modules can be
effectively used to provide illuminance measurements to the
controller. However, the mounting locations and orientations
of the sensor modules had to be limited in such a way
that they are maximally exposed to ambient light to harvest
sufficient energy for running the modules and charging the
energy storages to be used in low-light condition. Our work
proposes a wireless sensor network of a similar scheme, but
with sensor modules that are not restricted in their placement
and have extended operation time under low-light condition.

IV. SYSTEM ARCHITECTURE

Figure 1 provides a flowchart of our system architecture
decomposed into the software (above) and WSN hardware
(below) components. The WSN consists of two major com-
ponents: remote light sensors and a base station with a
central radio receiver and computer. Remote light sensors are
stationed at selected workstations throughout the indoor space,
and transmit local illuminance data to the base station using
radio transceivers. The central base station receiver relays the
data to the base computer through a serial port, and the data
is stored locally in an SQLite database.

Once the data are collected from the WSN, the data
processing modules are called for regularizing the matrix
dimensions, eliminating zero illuminance readings during day-
time, eliminating redundant data, and smoothing. The database
stores the illuminance readings by mote number, Unix-time
stamp (primary key), date and clock time, sky condition
at the nearest weather station, solar altitude and azimuth,
cluster ID. The software modules, written in Python, include

Fig. 1. System architecture showing hardware and software components.

a database driver, facade orientation prediction, a sun position
calculator and programs for clustering, data processing, indoor
light distribution and day-ahead prediction. The hourly sky
conditions, temperature and relative humidity forecasts are
called using Wunderground API. Solar altitude and azimuth
are calculated using the Astronomer Almanacs solar position
algorithm [27]. The same driver module is also used to forward
the illuminance readings to an online database following a
Simple Measurement and Actuation Profile (sMAP). sMAP
was developed by UC Berkeley as a single web based platform
for accessing large volumes of data from all possible sensor
points from a multitude of disparate and distributed data
sources such as building management systems [28], [29].
We will describe the light powered WSN platform in detail
in section V, and discuss the components of the software in
section VI

V. LIGHT POWERED WIRELESS SENSOR

NETWORK (WSN)

The Wireless Sensor Network (WSN) is a deploy-and-forget
illuminance data acquisition system optimized for low energy
operation in indoor spaces. The WSN consists of remote light
sensors that are primarily powered by small photovoltaic (PV)
cells, harvesting ambient light energy in the indoor space to
collect and transmit local light intensity readings.

A. Remote Light Sensor Unit

The WSN remote light sensors (see Figure 2) are centered
on the TelosB platform, an open-source microprocessor-based
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Fig. 2. Remote light sensor with Sanyo AM-1815 photovoltaic cell.

remote sensing platform developed at UC Berkeley. Illumi-
nance data is collected by the TelosB’s onboard Hamamatsu
S-1087 photodiode and transmitted to a base station receiver
via the IEEE 802.15.4 layer over a five-minute duty cycle.
Each remote sensor is fitted with a Sanyo AM-1815 pho-
tovoltaic (PV) cell to harvest ambient light energy in the
indoor space. The energy harvesting system centers on the
Cymbet CBC-3150 energy management module to regulate
electrical power generated by the PV cell. In addition to the
energy harvesting system, the units have an auxiliary battery
to facilitate system start up and ensure reliable operation in
low light conditions (see Figure 1).

The TelosB platform’s microprocessor is programmed using
the open source TinyOS software. When using the default
open-source code available from TelosB, it was found that
the remote light sensor consumes 0.849 ± 0.003 mW of
power when in the sleep state and 54 ± 3 mW during a
100 ms data transmission period. This equates to a total energy
consumption of 260 ± 1 mJ over the nominal five-minute duty
cycle.

The open source TinyOS code was modified to minimize
the remote light sensor’s energy consumption. The data trans-
mission period was reduced from 100 ms to 40 ms, the
MCU clock speed was reduced from 4 MHz to 1 MHz, and
an internal power-saving configuration was used to disable
the TelosB microprocessor during the sleep portion of the
duty cycle. Using these modifications, the TelosB platform
consumes 0.2019 ± 0.0003 mW in the sleep state, and a
maximum of 45 ± 3 mW during the 40 ms data transmission
period. Given these performance characteristics, the platform
uses 62.4 ± 0.2 mJ of energy over the five-minute duty cycle,
roughly a 75% reduction from the original configuration, with-
out noticeable effects on data transmission range or reliability.

B. Ambient Light Energy Harvesting

Studies have shown that ambient light energy harvesting
can be suitably employed to power wireless sensor networks
[26], [30]. For a light sensor platform, energy harvesting
from ambient light is a natural choice. In order to assess
the feasibility of this method, the power output of the Sanyo
AM-1815 was characterized at several light intensity levels,

Fig. 3. PV cell power output at different controlled light levels.

TABLE I

MAXIMUM PV CELL POWER OUTPUT

as shown in Figure 3. For each case, the PV cell was exposed
to a constant illuminance under varying electrical loads. The
electrical output of the cell was recorded at each load point,
and the resulting performance curves are shown in Figure 3.
Figure 3 shows that every illuminance level, a load point
exists which maximizes the PV cell’s power output. Table I
shows that the maximum output of the PV cell at an incident
illuminance of 200 Lux is roughly equal to the TelosB’s
power consumption in the sleep state. At the OSHA mandated
minimum indoor workspace illuminance of 30 foot-candles
(∼ 320 Lux) [31], the maximum power output of the PV cell
exceeds the TelosB’s power consumption in the sleep state by
0.090 ± 0.004 mW. This excess power is stored in the system’s
super-capacitor, providing 1.8 ± 0.2 mJ of energy required
during the TelosB’s data transmission period. At an incident
illuminance of 320 Lux, the capacitor takes about 20 seconds
to store the required transmission energy, and 166 seconds to
charge to a maximum capacity of 14.9 ± 0.7 mJ at the nominal
operating voltage of 3V. In this way, the energy generated by
the PV cell and stored by the super-capacitor over the remote
light sensor’s 5-minute duty cycle is well within the TelosB
platform’s energy consumption requirements.

However, these experiments also showed that the PV cell’s
power output is extremely susceptible to changes in both
lighting conditions and electrical load, demonstrating the
need for a management circuit to regulate and maximize
this fluctuating output. The CBC-3150 module is equipped
with an impedance matching function that varies the load on
the PV cell to maximize the power output. This impedance
matching function optimizes the PV cell’s power output with
fluctuating incident illuminance. The CBC-3150 subsequently
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Fig. 4. Remote light sensor power management.

regulates this optimized PV power to maintain a maximum
output voltage of 3.3 V to the TelosB platform.

C. Auxiliary Battery

A coin cell battery is added to the aforementioned energy
harvesting system to address two major shortcomings, which
we address next. Firstly, the system ceases to operate when
exposed to illuminance levels below 200 Lux. At this incident
illuminance, the power generated by the PV cell is roughly
equal to the power consumption of the TelosB platform in
the sleep state. Consequently, no excess energy can be stored
in the system’s super-capacitor over the sleep portion of the
duty cycle to power the TelosB platform during the data
transmission period. For the purpose of collecting data during
building occupancy, it was deemed necessary to operate the
remote sensors at a minimum illuminance of 50 Lux. Below
this illuminance level, the space is deemed too dark for
occupancy, and data collection is no longer required.

Secondly, the energy harvesting system was identified as
having difficulties “waking up” following extended periods of
complete shutdown, typically overnight. When the remote light
sensor’s TelosB platform and Cymbet CBC-3150 initially boot
up, they require a surge in power to initialize various systems.
It was found that the PV cell was typically unable to energize
the super capacitor to the levels required to overcome this boot
up surge until illumimances reached about 500 Lux. This often
led to the remote light sensors remaining non-functional until
late morning or early afternoon. These two observations led
to the conclusion that an auxiliary battery was required to
enhance the system’s operational reliability.

Adhering to these requirements, auxiliary battery power
should only be provided to the TelosB platform during periods
when the incident illuminance is between roughly 50 and
200 lux, as illustrated in Figure 4. A window comparator
enables auxiliary battery power to the platform when the
voltage generated by a photo-resistor resides within a defined
range. The lower and upper thresholds of this voltage range
are initially calibrated to correspond to an incident illuminance
of 50 and 200 Lux, respectively. In this manner, the auxiliary
batteries both extend the effective data collection period, and
provide the energy surge required to boot up the sensors in
low light conditions. If needed, users can adjust the thresholds
of the voltage range using potentiometers, to control the
illuminance range during which auxiliary battery power is
enabled. This feature allows users to control the sensor’s

TABLE OF SYMBOLS

boot up and shut down threshold, and modulate the period over
which energy harvesting is enabled. Moreover, this flexible
power management system enables users to easily configure
the sensor units to operate efficiently in a wide variety of
locations and incident illuminance levels.

Testing over two months showed that the sensor units were
typically shut down for roughly 12 hours a day, using auxiliary
battery power four hours a day, and harvesting light energy for
eight hours a day. Given these performance characteristics, the
system had a daily current consumption of 0.55 ± 0.09 mAh
at a nominal voltage of 3V. The remote light sensor utilizes a
CR2032 lithium battery, with a capacity of 240 mAh at 3V,
allowing the sensor to operate over a year before requiring
battery replacement. It should be noted, however, that the
performance of the system is entirely reliant on ambient illumi-
nance levels and the auxiliary battery management thresholds
set by the user.

VI. SOFTWARE

A. Data Processing

The raw light data can be noisy due to dropped packets,
redundant communication between the receiver and the sender
nodes and low sensor accuracy. Other errors may stem from
sensors that are shadowed or covered due to human activities
or due to battery power drainage. Such errors must be handled
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with sensor validation algorithms prior to basic data process-
ing. The patterns in the data generated by each of these errors
could be simulated and labeled for comparison with future
data. Alternatively, the error patterns could be learned when
the lighting system is running. We chose the latter to avoid
intervention in real buildings.

For sensor validation we proposed a tolerance based on the
30-minutes moving average of light data. Empirical studies
with the daylight data showed that a moving average over
a 30-minute time window was able to capture the trend
in daylight change due to changing sun position, without
over-smoothing the data. Let xt be the illuminance reading
at current time step t . In place of raw illuminance data xt

we use 30-minutes moving average until time step t , yt

(see equation 1) as the input data for the regression models.
Prior to the above we correct for erroneous raw data. If the
difference between xt and xt−1 is greater than the difference
between yt−1 and xt−1 by a threshold percentage, chosen
as a function of the illuminances, then xt is assumed to be
erroneous and replaced.

yt =

5∑

n=0
xt−n

6
(1)

If (xt−1 − xt ) > ( f (xt−1 − yt ))(xt−1 − yt ), then replace (2)

f (xt−1 − yt ) in rule (2) is a function of (xt−1 − yt),
determined iteratively. The erroneous reading is replaced by
illuminances from the same 30 minutes interval, averaged over
the past seven most similar days. The distance metric used to
compute similarity between one pair of 30-minute time spans
is the day-to-day difference between averages of illuminance
readings in that time span. Data points from various sensors
with the nearest time stamps were also fused to avoid impu-
tation as part of sensor data validation and processing.

B. Clustering Based Piecewise Linear Model

Ray-tracing light models can accurately approximate the
indoor light distribution of buildings. These models, however,
require accurate building and furniture dimensions and can
be difficult to develop, requiring technicians and professional
experts for calibration. An inverse model, by contrast, is a
reduced-order model with only statistically significant inputs
or features, and hence can be computationally inexpensive to
perform simulations within a control loop. For these reasons,
an inverse model is a promising choice for a predictive lighting
control system designed for ease-of-use. Inverse problem
theory describes methods by which a model of a system is
developed by: (1) parameterizing the system in terms of a set
of model parameters that adequately characterize the system in
the desired point of view, (2) making predictions on the actual
values based on relatively simple physical laws and given
values of the model parameters, and (3) using actual results
from measurements to determine the model parameters [32].
The ordinary least squares (OLS) method functions to create
a best linear fit of a given dataset by minimizing the sum
of the squared residuals. We used multiple linear regression
models. Based on the performance improvement achieved by
the Sun Position-Based Model we assume a piecewise linear

Fig. 5. Hourly daylight distribution under different clouded sky conditions.
a) Parly cloudy conditions. b) Scattered clouds conditions. c) Overcast sky
conditions.

relationship between the illuminances measured across the
test bed at different workstations and between the artificial
and natural light sources, with model parameters varying with
solar altitude (time of the day) and sky conditions. The time
scale of each linear model is 30 minutes i.e. we have one set
of models for every 30 minutes-interval of the day during the
daylight hours.

As we indicated in Section III, the correlation between
daylight and measured light distribution in space changes
depending on whether the light sensor has direct sun in its
field of view and/ or whether direct sunlight is entering the
space. The presence of direct or indirect sunlight is also
affected by sky conditions. One way to include sky conditions
in the feature space would be to use satellite weather data.
We compared the hourly sky conditions from online weather
data with our onsite daylight measurements. We found that
the online weather data did not reflect the site-microclimate
adequately under partly cloudy conditions. Figure 5 shows a
wide and comparable distribution of daylight under different
clouded sky conditions obtained from the weather data. The
lack of identifiable relationship between weather station data
and onsite light distribution precluded the use of regional
sky conditions as a potential feature in our light models.
Instead we used clustering as a proxy for sky conditions,
with a constant number of clusters (explained later in this
sub-section). Dividing the data into half-hourly bins takes into
account variations in the solar altitude at a lower resolution
than our prior consideration [25]. The choice was made to
accommodate tradeoffs between data requirements for conver-
gence of clustering and model accuracy.

Clustering algorithms use unsupervised learning to discover
natural groupings in unlabeled data. We used the K-means
clustering algorithm for its simplicity [33] and availability of
variants [34].
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Fig. 6. Input matrix to clustering algorithm.

We describe the clustering method next. Clustering is per-
formed on the mean and the standard deviation of the daylight
data alone. This is based on the assumption that high mean
daylight with low fluctuations characterize a clear sky, low
mean daylight with low fluctuations correspond to overcast
conditions, while under cloudy skies the daylight fluctuates the
most but the mean light level is unpredictable. As mentioned
earlier we divided our illuminance dataset into 30-minute bins,
such that each bin for a day contains six data points at five
minutes sampling interval. We then compute the mean and
standard deviation of these six illuminances across all the days
in our dataset.

Let z j εR
M×2 be the data matrix of mean and standard

deviation of measured daylight for the j th 30-minute interval
of a day, where j = 1,2,…,J , and J = 24 between
7a.m. and 7p.m. M is number of days in the dataset (see
Figure 6). We performed clustering on each of z j . Each data
point within z j is assigned to one of the clusters c j k in C j
for k = 1,2,3. K-means partitions the data by minimizing the
sum of squared distance between a cluster centroid μ j k and
z j εc j k. The resultant objective function for K-means is given
by equation 3:

J (C j ) =
3∑

k=1

∑

zi ∈ck

||z j − μ j k||2 (3)

Once clustering has been performed, the entire illuminance
dataset is divided into JK = 24 × 3 clusters. For the rest
of the paper we refer to the processed illuminance at each
workstation w ∈ W (set of workstations and sensors) for the
jkth cluster as y j k

w . For this work, we used the K-means module
of Scipy, Python with 20 initializations of cluster centroids
and 100 iterations per model. One limitation of K-means is
that the optimization problem presented in equation 2 can
converge to local minima, which may differ with different
random initializations of the centroids. However, most of
our random centroid initializations resulted in similar final
centroids, thereby obviating refined initializations. The results
section provides more discussion of results and implications
of clustering.

y j k
w can be modeled as a linear combination of illu-

minances measured at other workstations { y j k
1 , . . . , y j k

w−1,

y j k
w+1, . . . , y j k

W } and artificial light statuses {es} for S artificial
lights in the influence zone as in equation 4.

ŷ j k
w = α

j k
1 y j k

1 + · · · + α
j k
w−1 y j k

w−1 + α
j k
w+1 y j k

w+1 + · · ·
+α

j k
W y j k

W + β1e1 + · · · + βses + · · · + βSeS + ε (4)

α = {αw} and β = {βs} are model parameters and ε is
random error. To solve this equation, the method of Ordinary
Least Squares leads us to find the values of α and β that
minimize the sum of the squared residuals. The above virtual
sensor model is independent of the spatial layout of sensors
for ease of implementation and scalability.

C. Adaptive Regressor Selection

One of the challenges in multivariate regression is the choice
of an appropriate set of features or regressors, balancing a
tradeoff between over-fitting and prediction accuracy of the
inverse model.

In adaptive regressor selection, the optimization problem
is to decide the location of the sensors for minimizing the
prediction error across the workstations over the entire pre-
diction period. Thus at the end of the training period we want
to replace some of the light sensors by their inverse virtual
models. The above problem is that of feature selection, in
which we will retain the most informative features given a
constraint on the number of features.

An adaptive regressor selection algorithm is a threshold-
based heuristic feature selection process that minimizes the
prediction error across all w. The algorithm selects a linear
model for every sensor w and for every cluster c j k , such that
the number of regressors is utmost 0.5 * W in all. The training
and the validation processes are executed in a single loop
for each of the trained models y j k

w . The prediction accuracy
is measured in terms of Root Mean Square Error (RMSE)
between the actual and the predicted illuminances of the
sensor over the entire prediction period (independent) of the
cluster.

W = {1, 2, …, w,…, W} is the set of all workstation sensors.
For sensor w ∈ W ,

For cluster jk,
Train models {α,β}A per equation 4, where A =

{1, 2, …, (W−1)!
(W−r−1)!r !} is a set of all possible combinations of

sensors ⊂ W \ w and r is the number of regressors varying
between 1,2,3…0.5*W.
During testing period,

For sensor w ∈ W ,
Pick cluster jk

Predict {ŷ j k
w }A∀A

Select A with the minimum root mean square error across
all w as,

argminA
∑

wεW\A
2
√

∑
i (y jk

wi − ŷ j k
wi )

2

Pick the corresponding common set of sensors.
The above clustering-based model requires (W−1)!

(W−r−1)!r ! iter-
ations per workstation and can be used to directly control
the regressor numbers for reduced sensor deployment. In the
results section, we compare this method with a commonly
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used feature selection method called LASSO (Least Absolute
Shrinkage and Selection Operator) [35]. LASSO is a one
step regressor selection method with implicit set of iterations
determined by regularization termination criteria.

D. Day Ahead Prediction of Indoor Light Distribution

The goal of day-ahead prediction of light distribution is to
predict the available lighting load shedding from a building.
Lighting loads could be reliable contingency reserve, spinning
and non-spinning reserves. Most of these load participations
require a short response time of 1 second to a few minutes
and a total commitment of 1 to 2 hours. If we were to
guarantee a minimum lighting load shed for 2 hours, we should
know whether that continuous load shed would be comfortable
to human eyes. Experiments shows that dimming artificial
lights by even 80% is tolerable for most people in presence
of sufficient daylight. Therefore, this reduces our problem
to prediction of daylight availability in the next two hours.
Such predictions will be important for spaces with low solar
penetration.

Many researchers have focused on short-term predictions
of daylight. For example, Lu et al. [12] proposed a short-
term prediction of daylight using a weighted linear function
of historical data, the weights being determined by a mean
square error based similarity metric between current day and
historical day. Day-ahead prediction is more challenging and
would be necessary for long-term demand response. Therefore,
in our current work, we focus on day-ahead prediction of
indoor availability. To the best of our knowledge there has been
very limited work on day-ahead prediction of indoor daylight
availability. However, parallels exist in the context of solar
radiation and PV power prediction. We found that, besides
numerical weather simulation, neural networks are the most
popular approaches to PV output prediction. We also turned
to the literature on day-ahead prediction of building energy
usage. Researchers have demonstrated day-ahead prediction
of building energy use from smart meter data using Gaussian
Process models as a function of temperature and time [36],
as neural network support vector functions of forecasted
temperature, humidity and solar radiation [37].

While Artificial Neural Networks (ANNs) are state-of-the-
art for prediction of solar irradiance for PV applications, they
are prone to over-fitting and several local minima. We found
that in addition to historical daylight measurements, we could
leverage availability of the day-ahead weather forecasts in our
prediction. However, as mentioned earlier, satellite weather
data can only indicate the general daily trend of sky condi-
tion, but cannot reliably represent the onsite sky conditions.
Under such circumstances over-fitting to online weather data,
resulting from neural network models may generate erroneous
predictions. Support Vector Regression, on the other hand, has
been known to often outperform ANN and OLS regression
by virtue of its generalizability. We, therefore, proposed a
Support Vector Regression (SVR) day-ahead prediction model
of indoor light.

We focused on modeling daylight at the windows, owing
to its high hourly and daily variance. Barring the higher

Fig. 7. Layout of cubicles and lighting conditions at Sustainability Base.

computational complexity of epsilon-SVR with non-linear
kernels compared to OLS regression, epsilon-SVR has several
advantages over OLS like flatness of function and error tol-
erance, besides the ability to handle non-linearity via kernels.
The flatness of the function means SVR algorithm searches
for small weights resulting in a more generalizable model. For
introduction to SVR refer to Smola and Schölkopf [38] and
LibSVM guide [39]. We used temperature, sky conditions and
the hourly moving average of past three days of daylight as
features. The main task of SVR is to set the hyper-parameters
of the regression in order to get the most generalizable
result. For selection of the hyper-parameters we refer to the
recommendations of Cherkassky and Ma (2003) [40], as will
be discussed later in Section VIII.

VII. DEPLOYMENT

Sensors were deployed across two cubicles in an open-
plan office space in Sustainability Base (SB) at the NASA
Ames Research Center. Sustainability Base is a 50,000 sq. ft.
LEED Platinum certified high performance office building at
NASA Ames Research Center. SB aims to redeploy inno-
vations and technologies originally developed by NASA for
aerospace missions to monitor and control building systems
while reducing energy and water consumption. The ultimate
vision of the SB is to provide a research test and demonstration
site for different sustainable technologies and concepts. The
three primary research objectives involved in this vision are
to reduce building energy consumption and operating and
maintenance costs, as well as to improve employee comfort
levels.

Seven sensors were deployed on workstations (sensors 1-7
in Figures 7 a & b) and one sensor was placed on the wall near
a window (sensor 8 in Figures 7 a & b). A 3D model of the
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Fig. 8. Clustered 30 minutes light data showing 3 clusters, 10:30 AM -
11:00 AM (left) and 5:00 PM - 5:30 PM (right).

layout of the test bed cubicles with sensor locations (top), heat
map of indoor light distribution and a photograph of the test
bed are presented in Figure 7. Sensors 1, 2 and 3 were located
at incremental distances from the window node 8, covering the
work plane across the entire cubicle and sensors 5, 6 and 7
were replicated in the adjoining cubicle. Sensor 4 was located
on top of a low height partition between the two cubicles.
Sensors 1 through 7 will be referred to as workstation sensors
in the rest of the paper. The goal is to use all of the above
sensors for model training, but only deploy 50% or fewer
of these eight sensors to predict the illuminance across all
the workstations during the operational phase of intelligent
lighting system. The sensors collected data for several weeks,
reporting the data to a local server. Real-time trends could
be accessed and viewed from sMAP (see Section IV: System
Architecture) and a dedicated webpage. Artificial light statuses
from four controllable luminaries were collected from light-
ing system data logs and were fed into the same database.
Training and validation data were sampled from May 25 -
June 5, 2012 and June 8 - June 20, 2012 respectively. During
the training and validation period, the building was occupied
and experienced normal operations.

VIII. RESULTS

A. Clustering Based Piecewise Linear Model

Figure 8 shows the results of clustering between 10:30 A.M.
to 11:00 A.M. (left) and 5:00 P.M. to 5:30 P.M. (right).
In Figure 8 (right), the mean illuminance has a narrow range
towards the end of the day, 310-380 lux and a compara-
tively wider range in late morning 250-380 lux. However,
in the morning the fluctuations in the light level are much
higher (0-40% of mean), compared to late afternoon (0-20%
of mean). The current dataset is taken from cloudy days.
Therefore, while the mean illuminance does not change much
throughout the day, the fluctuations vary due to generally
higher light intensity in late morning as opposed to early
afternoon.

The comparison of actual and predicted illuminances at
workstations 2,3,6 and 7 are displayed in Figure 9. The
two cubicles at SB are mirror images of each other, resulting
in sensor positioning at identical locations with respect to the
window. For example, workstations 2-6 and 3-7 have similar
light profiles over the prediction period. Workstation 5 is a
mirror image of workstation 1.

Fig. 9. Measured and predicted values at workstations 2 (top left),
3 (top right), 6 (bottom left) and 7 (bottom right).

TABLE II

ROOT MEAN-SQUARE ERROR FOR WORKSTATIONS 2,3,5,6,7

USING CLUSTERING-BASED MODEL

The Root Mean Square Error (RMSE) of the prediction
model (shown in both absolute value and as a percentage)
calculated for the validation period (June 8 - June 20, 2012)
is presented in Table II. Note that artificial lights have been
identified by small letters a, b, c and d which are arranged
in ascending order of distance from the window. The bottom
row indicates the sensors used as the optimal set of regressors.
Table II also lists the optimal set of regressors for best
predictability of light distribution across the workstations.
The RMSE is calculated across all the clusters for the entire
validation period. Therefore only three physical sensors out
of eight sensors deployed in the test bed were sufficient to
predict the indoor light field with desirable accuracy. This
amounts to 60% fewer sensors deployment compared to state-
of-the-art intelligent lighting systems, which typically place
a sensor in each luminary above each workstation. Results of
the Sun Position-Based Model, applied to the same dataset and
using the same set of regressors (as Table II), are presented in
Table III. The average prediction error across the workstations,
in our algorithm, has dropped to ∼ 5-15% (see Table II) with
adequate data processing and clustering compared to 20-45%
error using sun position-based data binning (see Table III).
Moreover, the new Clustering-Based Model shows a more
consistent prediction across the workstations with a narrower
error range. The current RMSE is ∼ 15-40 lux as opposed
to previous ∼ 60-250 lux across the workstations, reported in
Paulson et al. [25]. As observed in Paulson et al., the prediction
accuracy increases away from the window.
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TABLE III

ROOT MEAN-SQUARE ERROR FOR WORKSTATIONS 2,3,5,6,7

USING SUN POSITION-BASED MODEL

TABLE IV

NORMALIZED MEAN-SQUARE ERROR FOR WORKSTATIONS 2,3,5,6,7

USING CLUSTERING-BASED MODEL AND LASSO-BASED

REGRESSOR SELECTION

Fig. 10. Results of LASSO regularization showing five regressors essential
for explaining percent deviance in prediction.

In order to test the long-term model performance we also
trained and tested our inverse model on new data collected
from the NASA Ames Sustainability Base in winter, during
December 2, 2013 to February 4, 2014. The training times
used on the test set were over the first ten days, from December
2, 2013 to December 12, 2013. Results of the root mean square
percent error were within ±1 % of prediction results obtained
for summer months.

As mentioned in section VI, LASSO is a commonly used
feature selection method and does not require exhaustive
comparison as our method. Hence we compared the accuracy
error of our regressor selection method with that of LASSO.
We found that lowest prediction error was achieved using sen-
sors 2, 3, 4, 5 and 8 as regressors, the normalized mean square
error (NMSE) ranging from 0.007-0.127. The corresponding
NMSE for clustering-based model using only sensors 1, 4
and 8 ranged from 0.009-0.06 (see Table IV). Figure 10 shows
the regressor selection process, where all the five sensors are
required to explain majority deviance of the readings.

B. Day Ahead Prediction of Indoor Light Distribution

Figure 11 illustrates the daily distribution of measured
daylight level at the window on June 24-26, 2013. While light
distributions on June 24 and 25 displays a similar trend

Fig. 11. Distribution of daylight level on three days of June in 2013, June 24,
June 25 and June 26.

Fig. 12. (a) Scatter plot showing ∼ linear relationship between hourly
illuminances of two similar days (left). (b) Scatter plot showing deviation
from linearity due to dissimilar sky conditions.

throughout the day with an offset between the two, light
distribution on June 26 follows a similar pattern from 6:00 AM
to 8:00 AM in the morning, with a sudden overshoot after that
possibly due to clearer sky conditions, followed by a smoother
profile in the second half of the day due to overcast sky.
Therefore a simple regression model using historical values
of hourly illuminances may give a good result when light data
of June 24 is used to compute the day-ahead prediction of light
distribution in June 25, but the same does not hold between
June 25 and June 26.

We performed 5-fold cross validation to select features
for SVR. We found that forecasted hourly outdoor temperature,
hour of the day and hourly sky conditions are the most
important features affecting the sunlight measured at the
window. For similar days past light levels appeared to be a
better predictor than any of the above features. Besides these,
average hourly daylight levels over the past three days were
considered as a feature for the SVR.

The scatter plot in Figure 12 a) shows an approximately
linear relationship between hourly daylight levels measured
on two similar days. Figure 11 b) on the other hand illustrates
the deviation from linearity due to dissimilar sky conditions.
A linear kernel produced the least mean square error of cross
validation when data from historical days used in training and
the test data have similar diurnal shape. On the other hand,
Radial Basis Function (RBF) kernel is better able to handle
occasional non-linearity as shown in Figure 12 b). We con-
verted the sky conditions ‘clear’, ‘scattered clouds’, ‘partly
cloudy’, ‘mostly cloudy’ and ‘overcast’ to numeric values from
1-5, for convenience of SVR. The similarity between the days
was determined by the root mean square error between the sky
conditions over 24 hours period. Depending on the similarity
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Fig. 13. a) Results for optimization of RBF kernel parameter γ . b) Training
error of day-ahead prediction of daylight from May 25,2012 to Jun 1,2012.
c) Day-ahead prediction of daylight level on June 3-4, 2012 from forecasted
temperature, sky conditions and past 3 days hourly average measured daylight
level.

between the forecasted sky condition of the prediction day
and the previous three days, model cost function C, error
tolerance ε and the RBF kernel parameter γ were adapted
for improved prediction accuracy.

In SVR, C determines the trade-off between model com-
plexity and error tolerance, while ε can affect the number
of support vectors, which in turn governs SVR complexity.
Higher error means fewer support vectors. As mentioned
earlier C and ε are chosen according to the practical guidelines
set forth in Cherkassky and Ma (2003) [40]. A univariate
optimization of the RBF kernel parameter γ is then per-
formed using a standard grid search. The results of the grid
search and resulting fit to the training data are shown in
Figure 13(a) and 13(b) respectively. The result of SVR based
day-ahead prediction of daylight level on two consecutive
days; June 3-4 2012 is illustrated in Figure 13(c). The training

data consisted of past six days of hourly temperature, sky
conditions and hourly average daylight level of the past three
days. The minimum RMSE was ∼48 lux while the maximum
error was 204 lux. The average accuracy of the SVR model
over three days is ∼92%. The prediction error expressed as
root mean square error (RMSE) was found to be 112 lux on an
average with smaller error between similar testing and training
light environment.

IX. DISCUSSION

One of the major goals of adaptive regressor selection is to
ensure that the prediction accuracy demanded by the control
system for occupant visual comfort and energy savings is not
compromised. Therefore we analyzed the impact of prediction
accuracy of the inverse model on occupant visual comfort and
energy savings and determined an appropriate error threshold.
The analysis assumes that unless the energy savings target is
stringent and/or there is a Demand Response event, any under-
estimation or over-estimation leading to prediction within
300 lux - 500 lux will lead to inaction. Any under-estimation
below actual 300 lux will lead to energy wastage while an
over-estimation >67% above actual 300 lux is likely to cause
visual discomfort due to inadequate light; whereas when the
actual illuminance is greater than 800 lux, inaction resulting
from under-prediction may cause glare.

The recommended lux level for standard office work is
500 lux [41] and, assuming a logarithmic sensitivity of the
human eye, a momentary maximum error of 136 lux (as seen
in our prediction) is hardly perceivable. According to exper-
iments conducted by Luckiesh and Moss [42] the human
tolerance range at any illuminance is ∼ 50%, i.e., at 500 lux
the perceivable change threshold is 250 lux. This number
was also adopted as the European standard [43]. IESNA
Lighting Handbook [40] has a more conservative approach
and assumes a tolerance of 20%. This number was, however,
not experimentally validated.

The accuracy and predictive capability of first principle
models of lighting, using sophisticated and computationally
expensive ray tracing algorithms, vary widely depending on
the expertise and the experience of the modelers, the average
accuracy being 20% [44]. In comparison, ∼ 80%-95% accu-
racy across the test bed, as obtained in our work indicates
a model accuracy sufficient for occupant comfort. Moreover,
the spatial distribution of the errors was found to be consistent
except for workstation sensor 3. The temporal distribution of
error is within 10% for most of the workstations in the test
bed. Due to negligible under-estimation, we expect that the
problem of energy wastage will not be encountered.

Furthermore we were able to reduce sensor deployment by
60% compared to the state-of-art intelligent lighting system,
which use one photo-sensor and actuator per light fixture.
A scenario of two to three wireless sensor platforms per
occupant workstation, including daylight sensors, amounts to
one platform/6.2 - 9.3 m2, assuming a standard occupancy of
18.6m2/person as recommended by the ASHRAE standards
for ventilation (ASHRAE, 2010) [45].

We compared our clustering-based method with a more
standard feature selection approach, LASSO. One challenge
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in this comparison was the inability to explicitly control the
number of regressors in LASSO, unlike in the clustering-based
method. We found that our method marginally outperforms
LASSO in most cases with a smaller sensor deployment.
However, LASSO is computationally more efficient than
exhaustive regressor selection and can be considered as a
competing method for further cross-seasonal testing and val-
idation. Another approach would be to couple LASSO with
the clustering-based method where the cost function is the
aggregated error across all the clusters.

The average accuracy of the SVR day-ahead prediction
model over three days was ∼92%, a significant improvement
compared to prior literature. In related prior research on
24 hour prediction of solar irradiance, the researchers [46]
found that ANN could predict day-ahead solar irradiance with
30%-50% RMSE on sunny days and 70% RMSE on cloudy
days.

X. CONCLUSION

As part of our research endeavor to enable data-driven
model-based predictive control of building systems with the
Sustainability Base at the NASA Ames Research Center, we
are developing a computationally inexpensive predictive model
of indoor lighting. To this end we have deployed a low power
wireless sensor network (with PV-energy harvesting) at this
test bed and developed a piecewise linear regression model of
clustered workstation illuminance, built on a month of data
at seven workstations. In this work, clustering accounts for
the complex nature of daylight resulting from unpredictable
weather parameters such as sudden cloud cover and the rela-
tionship between building geometry and solar geometry. The
clustering-based model was capable of predicting the illumi-
nances with 80%-95% accuracy across the workstations. This
was a significant improvement over our prior work using a sun
position-based piecewise linear model. Clustering light data by
mean and standard deviation revealed patterns in the data that
could be utilized in refining the linear models. A support vector
regression model was able to predict the day-ahead daylight
availability with approximately 8% error. The predicted day
ahead hourly daylight availability as function of forecasted
hourly temperature, sky conditions and hourly average mea-
sured daylight of historical days is a potential valuable input to
model predictive lighting control of grid-integrated buildings.

XI. FUTURE WORK

While our integrated WSN platform and software have
demonstrated performance accuracy sufficient for intelligent
lighting control and occupant comfort, further validation must
be conducted for more generalizable results across larger test
beds and for a year round performance evaluation. As we
acquire more data from an operational test bed we will per-
form validation of the clustering-based model with randomly
chosen training and validation sub-sets from a larger dataset.
Our model has been developed using two weeks of training
data, and therefore may not be extrapolated to all possible sky
conditions or sun positions. Besides further training, deviations
in indoor light distributions from training datasets can be
accounted for in a robust control scheme through probabilistic

prediction, such as associating a confidence level with the vir-
tual sensor predictions. The clustering-based model of indoor
light will be extended to poll several explanatory variables as
required by individual lighting scenarios and perform real time
data fusion for reliability. Such a feature would be increasingly
important for the platform reuse model. We will validate the
day-ahead prediction model of daylight availability across all
possible sky conditions and extend it to predict day-ahead
spatial distribution of daylight.
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