
CAREER CHOICES OF FEMALE ENGINEERS
SUMMARY OF A WORKSHOP

Alice M. Agogino, University of California at Berkeley
BACKGROUND

As part of a project to examine the career outcomes of female recipients of bachelor’s degree in engineering, the National Research Council Committee on Women in Science, Engineering, and Medicine (CWSEM) held a workshop on April 24, 2013, titled “Career Outcomes of Female Engineering Bachelor's Degree Recipients”. The project was supported by the National Science Foundation (Grant No. 1137641).

The workshop was designed to increase (1) understanding of gender differences in the recruitment, retention, and advancement of women at critical transition points and (2) investigate and share the best practices to facilitate career transitions and advancements for all.

A summary of the workshop was published in 2014. This overview highlights some presentations and data from the workshop summary.

The views expressed are those of individual conference participants and do not necessarily represent the views of all conference participants, the planning committee, the National Research Council, or the National Science Foundation.

INTRODUCTION

• Despite decades of government, university, and employer efforts to close the gender gap in engineering, **women make up only 11 percent of practicing engineers in the United States.**

• Efforts at this workshop to examine women’s career paths and obstacles can point the way to ensuring that our world has a system in which women and minority groups can fully participate.

• The loss of women engineers from technical workplaces has implications for women themselves, the organizations they leave, and society as a whole.

• It is critical to US technological competitiveness and national security to understand factors that will help engineering organizations retain their highly trained workforce and avoid preventable turnover.

Taken from *Career Choices of Female Engineers: A Summary of a Workshop*. The National Academies Press; 2014.
Greenfield examined two key career outcomes: (1) the percentage of graduates in the labor force ("labor force participation") and (2) the percentage of employed graduates working in the field of their major ("retention").

Overall, Greenfield found:

“participation in the labor force is not a concern: women are participating in the labor force at high rates. It is retention in engineering that appears to be a challenge for both men and women: ten years after graduation.”
CASES FOR EACH COHORT AND SURVEY

<table>
<thead>
<tr>
<th>Cohort</th>
<th>Survey Year</th>
<th>All</th>
<th>Male</th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1994</td>
<td>640</td>
<td>550</td>
<td>90</td>
</tr>
<tr>
<td>1</td>
<td>1997</td>
<td>625</td>
<td>535</td>
<td>90</td>
</tr>
<tr>
<td>1</td>
<td>2003</td>
<td>575</td>
<td>490</td>
<td>85</td>
</tr>
<tr>
<td>1</td>
<td>All</td>
<td>520</td>
<td>440</td>
<td>80</td>
</tr>
<tr>
<td>2</td>
<td>2001</td>
<td>580</td>
<td>480</td>
<td>100</td>
</tr>
<tr>
<td>3</td>
<td>2009</td>
<td>930</td>
<td>750</td>
<td>180</td>
</tr>
</tbody>
</table>

LABOR FORCE PARTICIPATION RATE BY GENDER FOR ENGINEERING BACHELOR’S DEGREE RECIPIENTS IN THE 1992-1993 ACADEMIC YEAR

Key findings

- Male participation increases with time, female participation does not.
- While female participation 10 years after graduation remains high, it is still 10% lower than males.

*Difference between men’s and women’s rates is statistically significant at the 5 percent level.
Source: National Center for Education Statistics.

EMPLOYED ENGINEERING BACHELOR’S DEGREE RECIPIENTS FROM THE 1992-1993 ACADEMIC YEAR IN AN ENGINEERING/ARCHITECTURE OCCUPATION

Key findings

- The retention rate for both men and women drops ten years after graduation.
- The retention rate at each year for engineering bachelor’s degree recipients is higher for females than male.

^Difference between numbers for women and men is statistically significant at the 10 percent level. *Difference between numbers for women and men is statistically significant at the 5 percent level. The decline in the percent retained from four to ten years after graduation is statistically significant at the 5 percent level for both men and women.

Source: National Center for Education Statistics.

Comparison of the women who leave with those who stay in engineering revealed four trends:

- No difference in self-confidence in performing tasks, navigating work politics, or managing non-work roles
- No difference in terms of interests
- Differences in experiences with supportive workplace environment
- Differences in level of commitment and satisfaction with the engineering profession. Women who are still in engineering report higher level of satisfaction.

Workplace climate is the biggest differentiator that sets apart women who are currently working in engineering from those who left the technical field.

Women currently working in the engineering field:

- Experienced a supportive workplace
 Supportive workplace: family friendly work culture characterized by recognition of the importance of work-life balance and availability of work-life benefits
- Worked with empathic and understanding supervisors and coworkers
- Experienced fewer barriers at work in the form of incivility and undermining behaviors compared to women who left the technical field

RETAINING TECHNICAL TALENT: A DISCUSSION ON DATA NEEDS, CRITICAL TRANSITIONS, AND CAREER PATHWAYS

Total full-time/part-time enrollment in US undergraduate mechanical engineering programs, 2005-2012

The figure shows that despite seven years of continual enrollment growth in mechanical engineering, the enrollment of women remained stuck at 11-12 percent.

Can we dig deeper into the data?

Source: ASEE Data Mining Site, www.asee.org

Change in Number of Undergraduate Women and Men Studying Mechanical Engineering

<table>
<thead>
<tr>
<th></th>
<th>2005</th>
<th>2012</th>
<th>Change in number</th>
<th>Percent increase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female ME education</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9,194</td>
<td>14,377</td>
<td>5,183</td>
<td>56.40%</td>
</tr>
<tr>
<td></td>
<td>9,353</td>
<td>14,377</td>
<td>5,183</td>
<td>53.70%</td>
</tr>
<tr>
<td>Male ME education</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>76,271</td>
<td>107,080</td>
<td>30,809</td>
<td>40.40%</td>
</tr>
<tr>
<td></td>
<td>79,736</td>
<td>107,080</td>
<td>27,344</td>
<td>34.30%</td>
</tr>
</tbody>
</table>

Upon closer examination, the data from the previous figure reveals that since 2005 the number of undergraduate women studying mechanical engineering has risen more than 10 percent faster than the number of men—an increase in women of over 55 percent, compared to a 40 percent increase in men.

Source: ASEE Data Mining Site, www.asee.org
Women control 80 percent of consumer decisions but design only 10 percent of IT products and services.

Barriers to recruitment of women in IT:
• Subtle job posting bias deter women from seeking technical positions.
• Stereotypical environments (e.g. Star Trek posters, video games, etc.) marginally reduce women’s identification with the computer science field.

Barriers to retention of women in IT:
• The IT field lacks a culture of collaboration and hands-on learning, causing women to feel isolated in their working environments.
• The stereotypical perception of women as less technologically capable than men perpetuates the underrepresentation of women in the IT field.

Small businesses have more flexibility to propose and implement interventions rapidly.

Opportunities for small businesses:

• Adapt organizational environment to accommodate diverse populations, including women

• Encourage recruitment and implement mentoring programs for women in IT

• Provide access to professional technical societies that can be alternatives to internal mentoring program

How to leverage the right resources to get the data we need

• Promote collaboration among engineering societies
• Make data publicly accessible while protecting confidentiality
• Engaging a diverse range of societies to ensure the inclusion of populations that aren’t well represented in national datasets
• Benchmark datasets and conduct comparisons with other cultures, disciplines, and professions
• Encourage researchers to take a broader, interdisciplinary perspective in conducting their research

What is needed to create environments where *all* people feel comfortable, rather than just one group?

- An understanding that diversity brings value to every field
- A change in paradigm, from gender neutrality, which often means the environment favors men, to a paradigm of inclusion
- Action taken by management to define success by taking gender into consideration

To access or download or read the report online

Committee on Women in Science, Engineering & Medicine: Policy & Global Affairs, National Academies

RITA R. COLWELL [NAS], Chair, Distinguished University Professor, University of Maryland, College Park, and Johns Hopkins University Bloomberg School of Public Health

ALICE M. AGOGINO [NAE], Roscoe and Elizabeth Hughes Professor of Mechanical Engineering University of California at Berkeley

JOAN W. BENNETT (NAS), Professor, Department of Plant Biology and Pathology, Rutgers University

JEREMY M. BERG [IOM], Associate Senior Vice Chancellor for Science Strategy and Planning (Health Sciences), Professor, Computational and Systems Biology, University of Pittsburgh

ROBERT J. BIRGENEAU [NAS], Chancellor Emeritus, University of California, Berkeley

JENNIFER CHAYES, Distinguished Scientist, and Managing Director, Microsoft Research

EDWARD LAZOWSKA [NAE], Bill & Melinda Gates Chair in Computer Science and Engineering University of Washington

VIVIAN W. PINN (IOM), Senior Scientist Emerita, Fogarty International Center, and Former Director (Retired), Office of Research on Women’s Health, NIH

VALERIE TAYLOR, Senior Associate Dean of Academic Affairs, College of Engineering, and Regents Professor and Royce E. Wisenbaker Professor, CSE, Texas A&M University

LYDIA VILLA-KOMAROFF, Co-Chair, Chief Scientific Officer, Cytonome/ST, LLC

SHELDON WEINBAUM [NAS/NAE/IOM], CUNY Distinguished Professor, City College of New York

SUSAN R. WESSLER [NAS], Distinguished Professor of Genetics, UC Riverside
PROJECT STAFF

Catherine Didion, Study Director
Nina Boston, Senior Program Assistant
Cameron Fletcher, Editor
Sara Frueh, Communications Writer
Wei Jing, Research Associate
Other Resources

Thank You!