
Int. J. Man-Machine Studies (1987) 26, 213-230 

INFORM: an architecture for expert-directed 
knowledge acquisition 

ERIC A. MOORE 

Applicon/Schlumberger, 4251 Plymouth Road, Ann Arbor, MI 48105, U.S.A. 

ALICE M. AGOGINO 

Department of Mechanical Engineering, University of California, Berkeley, 5136 
Etcheverry Hall, Berkeley, CA 94720, U.S.A. 

This paper presents an architecture for INFORM, a domain-independent, expert- 
directed knowledge acquisition aid for developing knowledge-based systems. The 
INFORM architecture is based on information requirements and modeling ap- 
proaches derived from both decision analysis and knowledge engineering. It 
emphasizes accommodating cycles of creative and analytic modeling activity and the 
assessment and representation of aggregates of information to holistically represent 
domain expertise. The architecture is best suited to heuristic classification problem- 
solving (Clancey, 1985), in particular domains with diagnosis or decision-making 
under uncertainty. Influence diagrams are used as the knowledge structure and 
computational representation. We present here a set of information and perfor- 
mance requirements for expert-directed knowledge acquisition, and describe a 
synthesis of approaches for supporting the knowledge engineering activity. We 
discuss potential applications of INFORM as a knowledge engineering aid, 
specifically as an aid for developing insight about the encoding domain on the part of 
its user. 

1. Introduction 

Hindrances to widespread application of expert systems include what are typically 
significant allocations of resources, of critical personnel (the expert) and of 
knowledge engineering effort and equipment. The knowledge engineer's efforts to 
replicate the knowledge underlying expert performance through encoding tech- 
niques that maintain the form of that knowledge are known as knowledge 
acquisition; the design of tools and techniques to manage and support the process, 
as well as the active guidance of the process, is known as knowledge engineering. 
Knowledge acquisition is by far the hardest and most time-consuming part of the 
expert-systems building problem. 

"Knowledge-acquisition bottleneck" understates the significance of the effort 
required to assess from a domain expert the information necessary to achieve expert 
performance. The resources required to build an expert system seem to have 
funneled the application of knowledge-based technology to only high payoff 
projects, involving only experts with highly valued skills. Here, the more specialized 
the expertise, and the more significant the application, the harder it is for someone 
outside of the expert's domain-- the knowledge engineer--to build a system to 
replicate it. "Knowledge-acquisition Klein Bottle" might be more appropiate. 

What can one do? We could relax the performance requirement, and settle for a 
knowledge-based system without expert performance, or reduce the scope of the 
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target problem-solving domain, and settle for less functionality. Neither is likely to 
result in the most effective use of development resources. We could find persons 
with familiarity or proficiency with both knowledge-engineering tools and repre- 
sentation and the encoding domain (Fox, Lowenfeld & Kleinosky 1983), but even 
these persons are a scarce organizational resource. We could find less skilled persons 
in the domain that are likely to be more articulate about their problem solving 
(Dreyfus & Dreyfus 1980), but there is no assurance that these people will share 
their conceptual structure of the domain with that of the expert. Perhaps we could 
eliminate the expert knowledge engineer, and look for a way to let the expert 
encode directly. 

The thought of having experts encode their expertise is compelling. Without an 
intermediary between the expert and the system, there is less noise introduced to 
the encoded knowledge, there is no time spent for the knowledge engineer to learn 
the language and concepts of the domain, and the resultant system has the 
expert 's--and not an intermediary's---view of the domain (Friedland, 1981). For 
this, one risks losing process efficiency, for the expert must understand the 
knowledge representation and learn how to use the tool, one risks a potential loss of 
transparency, if the expert must recast his or her thinking in the tool's terms, and 
one risks failing to address objectively and fundamentally the expert's reasoning in 
the domain. 

Like many established engineering organizations, the U. C. Berkeley Mechanical 
Engineering Department has many potential applications for knowledge-based 
technology, rich areas of domain expertise, and many senior and articulate experts, 
but it lacks readily available organizational knowledge engineering expertise, as well 
as tools demonstrably appropriate for the potential applications. 

There is a very strong motivation to develop not just a toolkit, but a procedural 
aid, that will allow, for example, Master's level engineering students to successfully 
and efficiently employ knowledge engineering techniques and technology for 
practical problem-solving. Ongoing research has produced IDES, the Influence 
Diagram-Based Expert System, for doing probabilistic inference and planning using 
influence diagrams (Agogino, 1985, Agogino & Rege 1986] and (Rege, 1986a). This 
paper presents an architecture for INFORM, (INFluence diagram FORMer), an 
expert-directed knowledge-acquisition aid and interface for building knowledge- 
based systems in IDES. 

2. Prior work on knowledge acquisition 

We draw a distinction between techniques, tools and aids. A technique is a set of 
procedures, heuristics, or guidelines for performing Knowledge Acquisition (KA) or 
Knowledge Engineering (KE). A tool provides software support for application of 
the techniques, but no guidance on its own; knowledge engineers use tools. An aid 
is a tool that provides process guidance on its own. A domain expert undertaking 
any phase of a knowledge engineering project requires an aid. 

KE tools, techniques, and aids in the literature address different areas of the 
knowledge engineering process: encoding context, the phase of determining how the 
characteristics of the domain, the expert, the user, and the application will affect or 
constrain KA procedure; knowledge structuring, the process resulting in an initial 
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description of the knowledge base in the computational representation; and 
knowledge refinement, the process of model focusing and validation. Our research 
focus here is to provide tools that support KA in the context of developing 
techniques and aids for KE. Early work in KE was concentrated on developing tools 
and representations. The concept of the "knowledge level" (Newell, 1982), seeking 
to formally describe domain knowledge and problem solving at a level independent 
of implementation, has influenced the development of ontological representations of 
different problem solving domains, (Clancey, 1985; Alexander, Freiling, Staley, 
Rehfuss & Messick 1986), and languages specialized to problem-solving types 
(Bylander and Mittal, 1986). Recent emphasis has been on methodologies for 
structured KA (Freiling, Alexander, Messick, Rehfuss & Shulman 1985; Kline & 
Dolins, 1986 deGreef & Breuker, 1985), on assuring that the KA process meet the 
communication requirements of the application's organization (Grover, 1983), and 
on aids for rule refinement, (Kahn, Nowlan & McDermott 1985; Eshelman & 
McDermott 1986; Ginsberg, Weiss & Politakis 1985; Langlotz, Shortliffe & Fagan, 
1986]. 

The organizational and structured knowledge-acquisition approaches are 
information-driven in the sense that they are a formalism, a set of activities, which 
produce documents and assure that information requirements and checks are met. 
These approaches emphasize building a paper knowledge base, or building a 
conceptual or knowledge-level structure of the domain, before committing program- 
ming resources; here, experts can describe their domain structure in some accessible 
representation freed from the implementation representation and with minimized 
reformulation by the KE. The KE is later involved, however, in rule encoding and 
refinement. 

De Greef and Breuker (1985) see two basic approaches to knowledge engineer- 
ing: the skills/programming-based rapid prototype and test approach (Hayes-Roth 
& Waterman, 1983; Brownston, Farrell, Kant & Martin, 1985) and the structured 
knowledge-engineering approach, which guides and supports an initial knowledge- 
acquisition phase while implementation is deferred. The INFORM architecture 
actually falls between the two; we employ model refinement techniques from 
decision analysis and knowledge engineering in an environment that is pre- 
dominantly structured knowledge acquisition. 

Successful KA aids for domain dependent systems in both KE and Decision 
Analysis (DA) exist; their design typically provides a domain-based encoding 
language and set of problem solving primitives, domain specific graphics, or some 
superset of domain concepts from which a temporal encoding problem will be 
identified (Holtzman, 1985; Musen; Fagan, Combs & Shortliffe, in press; Merkho- 
fer, Robinson & Korsan 1979). "Domain-independent" implies that, for a given 
problem-solving approach, the user must create concepts, rather than select them, 
or that many meta-models of domain concepts are included in the tool model. Two 
aids for knowledge structuring, ETS (Boose 1984, 1985) and ROGET (Bennett, 
1983) elicit,the expert's structure of domain concepts though sequences of 
comparisons among sets of proposed objects. Both are intended for use by domain 
experts and result in "executable" rule bases. ROGET aids the user in choosing the 
appropriate inference technique and ontological representation, given information 
about the user's experience and the problem-solving type (as subsets of the 
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classification problem-solving model). INFORM is intended to be domain inde- 
pendent across the range of heuristic classification problem-solving, but is poten- 
tially adaptable to specific domains. 

3. Expert-directed knowledge acquisition 
The notion behind "expert systems" is the desire to replicate an expert's 
problem-solving performance in a domain. While rule- and frame-based expert 
systems are proving to be effective computational representations of knowledge and 
expertise, they are not complete cognitive models (perhaps not even cognitive) of 
that knowledge or expertise. So the process of capturing knowledge, of transferring 
the expert's cognitive structures, representations, and methods to computational 
domain structures, knowledge representations, and procedures, will almost certainly 
entail its reformulation. If, for the expert, the act of articulating this knowledge to 
an audience is novel, then the expert is also reformulating his or her knowledge. 
Knowledge engineering is thus both a descriptive and creative modeling activity. 

We view knowledge engineering as a model design and software engineering 
activity. A proportionally small amount of KE time is actually spent programming 
(Freiling et al., 1985, Grover, 1983); much of the skills (and effort) of knowledge 
engineering are modeling skills--analysis and reduction, information management, 
and process decision-making--as well as the traditional emphasis on performance 
replication through incremental refinement. An expert-directed KA interface must 
support all of these activities to in turn successfully support a model's elicitation and 
eventual refinement. 

The key assumptions behind any approach to self-encoding are that: 

It is plausible that the expert can efficiently learn and use the encoding interface: 
that the expert understands how to use the tool, understands the problem, and is 
motivated enough to use the tool conscientiously; 
The expert can think abstractly about the domain and problem-solving within it, 
i.e. identifying variables and influences; 
A structured, analytic approach to thinking about one's domain knowledge and 
problem solving can achieve a refinable model; 
The inevitable loss of transparency in encoded information is acceptable if the 
expert can somehow assure the performance of the model or if the expert is 
capable of thinking in the terms of the transformed model. 

4. Decision analysis, influence diagrams, and knowledge-based 
systems 

Decision analysis (DA) brings a body of experience to structured KA that meshes 
well with other approaches from within the AI community. 

4.1. DECISION ANALYSIS 

The decision analysis cycle (Matheson, 1977) is an iterative and interactive 
proscription for assuring that essential steps in the decision process or decision- 
making problem have been taken. It separates the process into deterministic 



INFORM 217  

structuring, probabilistic assessment, and informational phases. Assessment and 
modeling procedures direct the formation of choices, information, and preferences 
into the decision set. 

Both practitioners of DA and KE face the problem of attention focusing, not in 
making analyses complicated enough to be comprehensive, but rather keeping them 
simple enough to be affordable and useful (Howard, 1980). DA structuring aids 
have taken a largely " top-down" approach to modeling a domain, and the KE aids 
a "bot tom-up"  approach to describing the relations in a domain based upon 
examples of problem-solving performance. 

4.2. INFLUENCE DIAGRAMS 

Influence diagrams (Miller, Merkhofer, Howard, Matheson & Rice 1976; Rege & 
Agogino, 1986b) are an intuitively attractive conceptual and operational repre- 
sentation for domain expertise. We use influence diagrams as a knowledge structure: 
a way of organizing knowledge that is operational, but that makes no cognitive 
claim. Influence diagrams have developed into a decision analysis tool that 
graphically represents the structure of the decision problem but maintains the 
computational utility of the decision tree (Shachter, 1985). They are a three- 
layered knowledge representation, consisting of information at three hierarchical 
levels: relational, functional, and numerical. This hierarchy accommodates well the 
way people tend to model from simple to complex, and from conceptual to numeric. 

At the relational level, influence diagrams are directed acyclic graphs that 
represent the interdependence of uncertain events in a complex system. Nodes 
represent sets of possible events, or a range of properties for some object. The 
presence of an arc indicates the possibility that the outcomes of one node are 
somehow influenced by the outcomes of the other. At the relational level, they 
superficially resemble semantic nets and frames. A major distinction is that Bayes' 
theorem allows topological solution, or "re-orienting" of influence diagrams. Pearl's 
work with Bayesian networks (Pearl, 1985) uses inheritance in a frame-based system 
to propagate uncertainties in a structure that closely resembles influence diagrams, 
though without decision nodes. 

The functional level is a specification of the type of relationship between nodes, or 
"how" a particular event or object influences another. The functional level is 
traditionally probabilistic, with quantitative relations compressed into the stochastic 
ones, but influence diagrams can readily accommodate fuzzy, logical, and other 
functional relations (Rege & Agogino 1986c). The numerical level is a quantitative 
measure of the "extent" of the relationship. 

Figure 1 describes a diagnostician's model for a simple centrifugal pump. At the 
relational level, we can say that the pump's "discharge" is influenced by the 
"foot-valve state" and "stainer state". The likelihood that discharge is high, low, or 
nil, is influenced by the likelihood that the foot valve is open or closed and the 
likelihood that the strainer is clear, partially clogged, or clogged. At the relational 
level, we can specify that the arc from foot valve to discharge is "logical"; if the foot 
valve is closed, the discharge is nil. Or we could specify a probabilistic relation, and 
give a distribution on the probability of discharge being high, low, or nil, given some 
joint distribution of strainer and foot valve states. The diagnostic inference problem 
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Ft6. 1. Sample influence diagram. 

is formulated as, for example: "given some flow meter reading X, and some 
pressure gauge reading Y, what is the probability that the strainer is clogged?" 

4.3. BRINGING DECISION ANALYSIS TO KNOWLEDGE-BASED SYSTEMS 

INFORM, because it is based on influence diagrams, is seen as best fitting 
applications under heuristic classification problem-solving (Clancey, 1985). The 
formal influence diagram representation is quite concise; there are nodes (a set of 
possible states for an event), states spanning the range of possible outcomes or 
values for the event, and probabilities on the occurrence of those states conditioned 
on other events. An arc in an influence diagram represents a heuristic link between 
a class of concepts in the domain. Data abstraction is subjective, rather than 
symbolic; the information lies in the uncertainty assessment or from further 
structuring, rather than in endorsements or in classification hierarchies. 

Applying DA to knowledge-based systems means that we focus on designing 
problem-solving models that effectively replicate expert performance, rather than 
concentrating on implementing descriptions of that performance. It is important to 
separate replication of performance from duplication of procedure--at best, 
duplication is unlikely to result in performance improvement. Rather than imple- 
ment actions emulating expert's problem solving actions, we want to use the expert's 
judgement to construct the model and to evaluate the model's performance. 

Langlotz et al. (1986) point out one of the side benefits of doing first- and second- 
order sensitivity analysis on heuristics: the KE has to think more broadly about the 
concept, not just what its value is, but what it could be, and how likely those other 
values might be. Decision analysis is normally employed for significant non-routine 
decision-making where there is uncertainty about the state of the factors influencing 
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the decision, the outcomes of the decision, or the extent to which the factors may 
influence the outcome. Knowledge-based systems are normally restricted to impor- 
tant but routine problem-solving, perhaps with the most frequency to heuristic 
classification style problems. In situations where it is uneconomical or impossible to 
replicate the expert problem-solving processes, the DA approach may be a viable 
way to approximate expert performance without explicitly relying on the processes 
behind it. 

Barr argues for knowledge-based systems that provide insights, and not merely 
answers (Barr, 1985). He sees the largest measure of the utility of expert systems in 
the fact that their construction forces critical re-evaluation of one's own expertise. 
The same has been said of the utility of Decision Analysis (Howard, 1980). 
Non-transparency (reformulation, rather than replication of a true expert's problem- 
solving skills), represents a potential corruption of those skills, but can improve 
domain skills in non-experts, persons who would not ordinarily get the benefit of the 
KE's critical attention. Non-experts and experts alike may gain improvements 
through articulating, structuring, and recording for examination relationships and 
strategies in the problem-solving domain. 

For knowledge acquisition and knowledge engineering, AI research and 
Knowledge-Based Systems practice offer: 

information manipulation and management tools; 
operational models of problem solving types; 
passive and intelligent interface design concepts; 
models of users and user problems; 
prototyping/system development techniques; 
tools and techniques for model refinement; 
techniques for heuristic control; 

and Decision Analysis offers: 

Normative models for decision-making; 
Robust techniques for modeling structure; 
Practical encoding techniques for uncertainty; 
Experience in organizational integration and acceptance. 

We see particular appeal in bringing the top-down modeling and Bayesian 
uncertainty approaches of Decision Analysis and the influence diagram together 
with the software engineering tools and performance refinement techniques of 
Knowledge-Based Systems. 

5. The information requirements for expert-directed knowledge 
acquisition 

The design of an interface must be based upon the needs and abilities of the set of 
users for the ~et of tasks composing the application. However, the interface must 
also assure that it gets to the application the information it needs to run. In this 
sense, INFORM is a port for putting information into a program--subject to 
requirements for content, quality, and ease of expression. 

There is no escaping the need to engineer information in order to represent 
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knowledge. At issue, here, of course, is how best to give the expert some 
responsibility for knowledge engineering. INFORM is responsible not only for 
meeting the information needs of the computational knowledge representation, the 
influence diagram, but for meeting the information needs of a knowledge engineer- 
ing process: context definition, model structuring, model refinement, and process 
decision-making. 

In the context of assessment, an influence diagram is a framework for ex- 
perimenting with a model's behaviour. The encoded diagram must represent 
information and must communicate an understanding. Much of this deeper 
information is descriptive, representing controlling assumptions, constraints on 
those assumptions and endorsement for or against them, intentions, histories, and 
alternatives. To communicate this understanding, we must represent information of 
different types: graph information, text, numerical, deterministic, logical, and 
uncertain. 

There are three basic types of information INFORM must represent: 

Model: the knowledge base; 
Procedural: information revolving around the state, history, and direction of the 

KE process; 
InsighO~ul: information adjunct to analytic and creative thinking about and 

explanation of the model. 

In this section, we discuss these information types in terms of their form and 
assessment. 

5.1. MODEL INFORMATION 

The information in the knowledge base is divided into Computational, Structural 
and Uncertain conceptual information types. 
Computational model information. These are the representational requirements of 
the formal influence diagram. Nodes, states, probabilities, outcomes, and arcs map 
from a heterogeneous collection of C data structures to formatted matrices and 
probability distributions for topological transformation and numeric calculation 
within IDES. 
Structural model information. An influence diagram represents a set of concepts and 
a way of associating related concepts. The underlying information may merely be 
descriptive to be useful. Augmented with context and assumption tags, and with 
their graphical representation, influence diagrams are an appealing way to structure 
the knowledge in a domain. 
Uncertainty model information. Despite the naturalness of the influence diagram 
representation, both temporal and domain-acquisition problems are difficult for an 
expert or some other user to solve without experience or training and in some cases, 
without assistance. While Bayesian probability is a particular strength of the 
influence diagram, encoding for decision-making and diagnosis problems presents 
difficulty. Probability encoding is tedious. People's numeric estimates of uncertainty 
invariably do not accurately represent their underlying judgement without some 
structured revision and debiasing (Raiffa, 1970; Kahneman, Slovic & Tversky 1982). 
The process of encoding uncertain information may affect the values assessed and so 
is critical to the utility of that information (Spetzler & Holstein, 1977). 
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The many alternative uncertainty calculi are in part responses to these problems. 
The failure, however, of any one representation to win widespread acceptance as 
the "best" underscores the need for richer representations. 

Bonissone & Tong (1985a) present further guidelines for assessment; these 
dovetail with what we already know from decision analysis to be important in terms 
of structuring the uncertain variable. Their discussion is valuable because it presents 
the uncertainty encoding activity explicitly as an information problem. So then, for 
each piece of evidence, one should determine the: 

measure of certainty/uncertainty; 
source of the evidence; 
credibility of the source; 
environmental conditions under which the source gathered information; 
sensitivity of the goal to evidence; 
cost of facility to gather information; 
likelihood of succeeding in gathering information; 
cost of this information gathering task; 
default plan to accomplish this task. 

The encoding of expert's uncertainty estimates is as least as important as the 
internal representation of that uncertainty in a knowledge base. One essential 
perspective on uncertainty representation which sometimes gets lost is that the 
representation must be intuitively agreeable to the expert--both the expert and the 
uncertainty representation must speak the same language. As Bonisonne (1985b) 
points out, it will ultimately take a mix of verbal and numeric representations to 
cover adequately the Babel of uncertainty representations used by different experts 
in different domains. 

Influence diagrams are founded on Bayesian probability. Cheeseman (1985) 
argues that Bayesian probability, if properly used, can be worked around virtually 
all objections to it; in his view, the faults of Bayesian probability are based primarily 
on the misperceptions of its critics. On the other hand, a number is a rather sterile 
representation of a quantity that, cognitively, appears to be in large part verbal 
(Zimmer, 1985). A strictly Bayesian numeric estimate is very convenient, and 
axiomatically correct, but is often misleading without a complete view of the priors 
implicit in the assessment. Further, a single number overestimates the crispness of 
the state of knowledge about that uncertainty. A verbal assessment incorporates 
more factors than a numeric one, but computation, without loss of information, 
requires that the user's fuzzy functions be known as a context-specific mapping of 
verbal to possibilistic (Zimmer, 1985) or probabilistic numeric distributions. 
Evidential reasoning emphasizes articulating priors acting on an estimate and the 
decision-making power of simply ranking outcomes [much like the Analytic 
Hierarchy Process in decision-making (Saaty, 1980)]. All of these approaches, under 
some conditions, make a strong case for themselves. With influence diagrams, we 
are committed to representations that can ultimately be mapped to Bayesian 
probability. 

Certainly a judgement on the strength or weakness of one representation or 
another should consider encodability of that representation. In assessing an 
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uncertainty estimate, considering all the approaches, one would want to: 

rank comparable outcomes in order of likelihood; 
assess a verbal (qualitative) estimate; 
assess numeric Bayesian values; 
elicit underlying evidence for an assessment; 
estimate the range of uncertainty; 
elicit direct conditions on the validity of the assessment. 

However, decision analytic information assessment calls for no less than all of this 
information. What we find is that, even though the computational representation 
may be considerably sparer, the conceptual representation must include an 
aggregate of information about the uncertain quantity. We contend that a 
well-designed encoding and representation environment can make the encoding of 
Bayesian probabilities for expert systems less forbidding and more accurate. Such an 
environment would support a composite conceptual representation of uncertainty 
(including linguistic, numeric, underlying and conditioning priors), a mapping from 
verbal to numeric, and from numeric to verbal, and a numeric Bayesian calculus. 

For INFORM, the approach we will take is straightforward: 

(1) first assess reference linguistic distributions in a broad context; 
(2) use these linguistic assessments as a "first pass"; 
(3) for refinement, with more sensitive variables, or for variables misleadingly 

represented by the linguistic assessment, qualify the linguistic assessment for 
the specific context or employ traditional numeric encoding techniques. 

5.2. P R O C E D U R A L  I N F O R M A T I O N  

Supporting the KA process, for a self-encoding expert, or for some combination of 
KE and expert, requires information management tools (for representing the model 
and process state and history as basis for making choices about what to do next, and 
it requires guidelines and tools for making procedural decisions. 

Many KA tools provide programming support, support interpreted incremental 
refinement, provide rule prompters, or a rule compiler based on a rule language. 
The DA framework is an approach that would complement all of these approaches. 
One view (Reboh, 1981) favors a system that requires the collaboration of the KE, 
but with techniques and tools for support of critical phases requiring little KE 
training. Such a system would in effect redistribute portions of the KE's expertise 
between the support tools and a domain expert or less skilled KE. This view is at the 
heart of the INFORM approach. 

5.3. I N F O R M A T I O N  F O R  I N S I G H T  

We regard "insight" as the creation and revision of a mental picture of the domain 
and processes within it, and the recognition and evaluation of possibilities and 
tradeoffs inside it. The modeling interface should provide the information and 
techniques for developing and maintaining insight about the model. Insight is 
supported by the ability to conveying timely information from the model to the user; 
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if it is not easy for the user to organize and convey appropriate information to the 
model, insight is impeded. The base issue is achieving a fit between user and 
interface. INFORM attempts to provide a familiar medium and acceptable stimulus 
for modeling effectively. 

Essay writing is a metaphor for the "progressive formalization" (Holtzman, 1985) 
of a decision analytic model. A contention of the INFORM approach is that 
expository writing could accomplish (in effect) what the motivation and structuring 
phases are intended to accomplish in the probability encoding process (Spetzler & 
Holstein, 1977); give the user the opportunity to address critically the assumptions, 
intentions, and methods behind the model. 

The "standard form" for writing an essay is a well-known and widely taught 
framework for expository thinking and discourse. As an encoding approach, it goes 
a step beyond simply writing rules into some subset of a natural or domain language. 
It puts relations into paragraphs and sections in support of a problem statement or 
thesis--the user thinks about components of the model in a structured sense, in the 
context of other model components, the modeling context, and the modeling goal. 

In reviewing a knowledge base encoded through INFORM, the DA, expert, user, 
or KE is in a sense reading a story; from the contents of the KB, the reader is 
supposed to be able to piece together a problem-solving "narrative". Applications to 
be used with persons other than the encoding expert require explanations that are 
dependent on the line of reasoning, the model description, and the background of 
the users relative to that of the expert. A very critical element for KA is visualizing 
an audience for the application. Viewed this way, we can say that the "rules of 
journalism" apply here too. In this sense, the reader must know--and the interface 
must somehow assess Who, What, When, Where, Why & How for its concept and 
relation. 

6. INFORM 

These three performance goals capture the essence of what INFORM is intended to 
achieve as a KA aid: 

(1) sufficiency, getting the encoded information right in terms of the influence 
diagram representation; 

(2) correctness, avoiding and correcting conscious and unconscious misrepresen- 
tations of expert judgement; and 

(3) providing insight, at minimum representing the correct information in a 
comprehendable form, at best completely capturing an expert's underlying 
model of the objects, relationships, and inferences in his domain. 

6.1. ARCHITECTURE 

There are four conceptual levels to the INFORM architecture. They build from 
satisfying iflfdrmation requirements to giving more sophisticated tools and advice for 
insight and finally to a system which could effectively tutor its user through the KE 
process. 

The first level is to fill the diagram to sufficiency, through satisfying structural and 
computational constraints. The second is to employ the kinds of feedback that 
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decision analysts and knowledge engineers employ: diagram drawing on demand, 
graphic feedback of distributions, ordinal, deterministic and stochastic sensitivity 
analysis, comfortable interaction language, and opportunity for and access to 
extensive explanation about the modeling process and the encoded model. The third 
is the "heuristic" approach, where the system provides hints and suggestions for 
encoding to the user based upon normative models of the encoding process and 
sticky points in the domain. Finally, with "expert aid", the system provides aid 
(hints, requests for explanation, reformulation) based upon encoding session 
information, normative models of the encoding process, and descriptive models of 
the problem domain and user's encoding style. 

The INFORM user, in an encoding session, goes through a problem and session 
structuring module, and then a succession of editing and analysis phases. A t  any 
time, the user may get help about the syntax, options, or intent of the current phase, 
or comment about some aspect of the model or the modeling process, or review 
some graphic or textual aspect of the model. Figure 2 shows the main modules and 
editor sequence. 

6.2. KNOWLEDGE STRUCTURING 

There are two key ideas to INFORM's structuring and refinement approach: 

(1) start modeling at the most general level of precision or specificity; 
(2) increase specificity only for the best improvements in model performance. 
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FIG. 2. Process paths and modules in the INFORM architecturc. 



~NFORM 225 

The user is free to edit the model, and accept or reject advice on what task to 
choose next, but is guided through model analysis and refinement. 

In the relational editor, the user specifies combinations of node name, node label, 
node description and arcs. On exiting the editor, this information is parsed and 
"incomplete information" is identified; the user is prompted to provide, for 
example, a description for a node identified only by a label. 

The nodes operated on in the relational editor determine the nodes to be 
operated on in subsequent phases, in the functional and numerical editors. The 
analysis phases are directed by ordered lists: perform sensitivity analysis with the 
nodes the user is least confident about, expand the nodes that the outcome is most 
sensitive to, assess in a different way those uncertainty estimates the user is least (or 
most confident) about. The order of nodes operated on is determined by user 
ranking, or by some function of the rank of the node within the influence diagram. 

Below are some of the activities in the INFORM architecture: 

INFORM encoding activities 

Set Context 

Model at Relational Level 
- Describe the Model: 
- Assure Completeness: 
- Look for Insight: 
- Offer Analysis: 
- Offer Advice: 

Revise Model? 

Model at Functional Level 
- Describe 

- Assure Completeness: 
- Offer Analysis: 
- Offer Advice: 

Revise Model? 

Model at Numeric Level 
- Assure Completeness: 
- Offer Analysis: 
- Offer Advice: 

Revise Model? 

System application? Encoding goal? Identify user group? 
Calibrate linguistic uncertainty? How much time is this 
encoding problem worth? 

Edit and compile nodes and arcs. 
For each: name, label, description, givens, explanation. 
Potential modifications? Encoding plan? 
Check for cycles, bushyness, sort objects by importance? 
"Might do this next" 

Does information about the state of "Node X" tell you something 
about the state of "Node Y"? 

Edit and compile functional form, states. Choosc decision rule, or 
choose quantitative form or uncertainty representation? 
Name, label, description, explanation, plan. 
Estimate modeling effort? 
"Consider reducing the number of states in these n o d e s . . .  " 

Assess aggregate uncertainty information. 
Sensitivity, performance analyses. 
"Focus next on these most sensitive nodes . .  " 

6.3. KNOWLEDGE REFINEMENT IN INFORM 

"Refinement", in the DA context, is directed towards attention focusing, typically 
through ranking, and deterministic and stochastic sensitivity analysis, and towards 
balancing the modeling effort in terms of both structural granularity and value of 
additional modeling effort. Refinement in rule-based expert systems building is a 
process of rule addition and modification leading ultimately to performance 
replication. Performance improvement in a knowledge-based system generally 
comes with increases in specificity; because of the large assessment effort behind 
properly encoding probabilities, a good decision model will expand and contract 
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through each refinement cycle. With influence diagrams, there is tradeoff between 
the granularity of the represented uncertainty and that of the model structure. 
Formally, influence diagrams rely on implicitly incorporating conditioning factors 
within the uncertainty assessment and in the concept's definition to result in a 
polished but condensed model. Rule-based expert systems representations, on the 
other hand, force this contextual information to be explicitly expressed as rules. Part 
of the refinement process in INFORM is the successive elaboration of what the 
model represents. 

The success of our approach to encoding uncertainty during refinement is 
contingent on at least three things: that, given no new information, some 
consistency of uncertainty verbal to numerical mappings is maintained over time and 
domain; the success of linguistic revision given new contextual information; and the 
extent to which information from simulation and tests is incorporated into revised 
estimates. 

6.4. INFORM IN THE F U T U R E  

The superstructure for INFORM has been implemented in C, and presently a single- 
display text and graph editor assesses relational information and automatically 
generates complex influence diagrams. We have written a linguistic calibration 
program; work is continuing at UC Berkeley with experiments to sample uncertainty 
vocabularies of graduate and undergraduate engineering students. Work is continu- 
ing with the re-implementation and development of the INFORM architecture at 
Schlumberger/Applicon with the Strobe/Impulse object programming and 
knowledge-base editing tools (Smith, Dinitz & Barth/986; Smith, 1983). 

The principal advantage of influence diagrams over decision trees is the explicit 
graphic representation of the interdependencies (or lack of) between events. 
Influence diagrams are fundamentally graphic entities; once a diagram has been 
created, the interface too should be organized graphically. Because we want to 
simultaneously represent different types of information about the model and the 
modeling process, a single view is inadequate. The interface under development will 
have static windows---for model graphics, model text, prompt window, 
editor/comments and "pop-up" windows--for agendas, menus, advisors, and 
uncertainty encoding and display. Given the need for a graphic representation, the 
interface should allow the diagrams to be created graphically (to be drawn on the 
screen), in addition to generating the graph from the user's entries of nodes and 
arcs. 

INFORM is intended to be domain-independent; a specialization of the architec- 
ture could add to the interface the kind of checking rules that allow for domain and 
user dependent meta-knowledge about encoding. RACHEL (Holtzman, 1985) is 
one such system, a domain-dependent intelligent decision support aid for infertile 
couples. 

Effective modeling approaches rely in part on the underlying domain and in part 
on the modeler's cognitive style. INFORM is a system intended to replace at least in 
part the expertise of the KE in directing and in giving advice to the encoder about 
the KE process, and in representing the encoded information. Implementation of 
the architecture may ultimately support active modeling and guidance of a particular 
expert's encoding effort. Prerequisites for such tutor include measurable or 
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deducible standards of knowledge engineering performance and methodology for 
individual actors, and that these measures are conditionable on a fairly small set of 
inferable or directly assessable measures. 

6.5. EVALUATION 

We would like to test INFORM for absolute performance, as an interface and as a 
modeling tool, and for relative performance, against an encoding expert. The true 
test is application, taking an encoding problem from scratch with an acknowledged 
expert, and trying to build a working system in a nonlaboratory environment. The 
typical test of comparing system performance against that of an encoding expert is 
inappropriate at this point but ought to be an eventuality. At the interface level, we 
have used and continue to use "good design" checklists (Heckel, 1984), but that is 
no real assurance of a good interface without testing and experience. At this stage, 
while we are still developing an "integrated" system, user comments and ad hoc 
evaluation have been especially useful. More formal approaches to interface 
evaluation will be the next step. 

There are further questions arising from the premises that we have based the 
INFORM architecture on. Are there correlations between level of skill and 
self-encoding ability? We would like to use INFORM in a group with measurably 
disparate levels of problem solving skill in a common domain. Does structured 
explanation support model articulation, or is this approach too much of a burden on 
the imagination and patience of the "typical" expert? Does having control over 
simulation and performance evaluation put the expert in a position where he or she 
is describing concepts and relations that exist near the problem-solving level, or will 
the expert still construct unrefinable models? These questions represent both sides 
of bets that we are making in this research. 

A testing issue that is separable from the evaluation of the entire interface is the 
effectiveness and accuracy of our linguistic uncertainty encoding approach. Testing 
areas of interest include looking at differences in the language of uncertainty 
between estimates about uncertain events from inside and outside the encoding 
domain, consistency of judgements between subdomains, and the efficacy of 
different approaches to representing the encoding problem and conducting 
refinements. 

6.6. POTENTIAL APPLICATIONS OF INFORM 

When can we use a stand-alone aid such as INFORM for constructing a 
knowledge-based system or decision support system? We divide the spectrum of 
application problems down into significant and not-significant problems. Significant 
problems are "high stakes" problems, involving lives, or allocations of resources 
significant in the eyes of the sponsoring organization. For significant problems, in a 
novel domain, one would expect to be able to use a KA aid as a preprocessor (as in 
ETS) for initiating the model, but would certainly expect decision-analyst or 
knowledge-engineer involvement in model refinement and validation. Significant 
problems in a stable and well-understood context are liable to see the involvement 
of DA and KE, but it may not be always necessary. In both cases, the KA aid must 
accommodate well the involvement of DA and KE. 

For problems whose solution is strongly driven by model structure, or where 
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solution precision is not critical, INFORM is plausibly stand-alone. Other potential 
roles for INFORM in KE are as a "pre-processor", structuring the domain for 
explanation as a component of an intensive KA process; as a KA aid for supporting 
a novice knowledge engineer; as a personal KA tool for novel problems or where 
the modeling goal is oriented towards developing insight; as a domain-independent 
aid for non-significant problems; and as a domain-dependent aid for significant 
problems. 

7. Conclusion 

We feel knowledge-acquisition aids must support information assessment and 
presentation and must provide support for undergoing a sound modeling process. 
Fundamentally, the INFORM architecture is an aid for building models; it draws its 
knowledge structure and modeling approach from Decision Analysis, and its 
aigproach to handling information and heuristics about encoding from Knowledge 
Engineering. It is well suited for classification problem solving, especially under 
uncertainty. The support INFORM will provide for experts encoding is as a top 
down design aid, focusing on descriptions of the domain concepts and structure, 
rather than on examples of problem solving in the domain. Structure is edited, 
rather than induced. Such direct involvement of the expert in constructing an 
operational model of the domain we feel will aid knowledge engineering for insight, 
aiding the development of expert behavior not only on the part of the system, but 
on the part of the encoder as well. 

This work was performed at the University of California, Berkeley, and was funded 
in part through grants from the National Science Foundation PYI Program, University of 
California's Project Micro, General Electric and IBM. 
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