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Abstract— Robots based on tensegrity structures have the
potential to be robust, efficient and adaptable. While tradition-
ally being difficult to control, recent control strategies for ball-
shaped tensegrity robots have successfully enabled punctuated
rolling, hill-climbing and obstacle climbing. These gains have
been made possible through the use of machine learning and
physics simulations that allow controls to be “learned” instead
of being engineered in a top-down fashion. While effective in
simulation, these emergent methods unfortunately give little
insight into how to generalize the learned control strategies and
evaluate their robustness. These robustness issues are especially
important when applied to physical robots as there exists errors
with respect to the simulation, which may prevent the physical
robot from actually rolling.

This paper describes how the robustness can be addressed in
three ways: 1) We present a dynamic relaxation technique that
describes the shape of a tensegrity structure given the forces on
its cables; 2) We then show how control of a tensegrity robot
“ball” for locomotion can be decomposed into finding its shape
and then determining the position of the center of mass relative
to the supporting polygon for this new shape; 3) Using a multi-
step Monte Carlo based learning algorithm, we determine the
structural geometry that pushes the center of mass out of the
supporting polygon to provide the most robust basic mobility
step that can lead to rolling. Combined, these elements will give
greater insight into the control process, provide an alternative
to the existing physics simulations and offer a greater degree of
robustness to bridge the gap between simulation and hardware.

I. INTRODUCTION

Tensegrity robots are an innovative concept based around
building a soft, compliant robot based on a tensegrity
structure. These tensegrity structures are a unique class of
structures constructed by a network of cables connecting
isolated rods [1], [2]. The way these structures distribute
forces across their members has many analogies to multi-
agent systems and networks [3]. Although no rod members
touch each other, a tensegrity structure maintains its equi-
librium geometry by delicately balancing cable tension and
rod compression forces. In other words, rod ends, or nodes,
where cables are connected, of a tensegrity structure at an
equilibrium experience zero net forces. This property of the
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Fig. 1. A six-strut tensegrity robot developed at UC Berkeley. The robot
consists of 6 rods and 24 cables. Linear actuators located at the center of
each cable are used to deform the robot structure. A controller placed at
the center of the structure controls all of the linear actuators.

structure is exploited in Sect. III, where an equilibrium of
the structure is found by a dynamic relaxation technique.

Naturally compliant tensegrity structures have several ad-
vantages for soft robotic platforms. They are lightweight,
robust, energy efficient and capable of a wide range of
motions [4], [5], [6], [7]. Moreover, their structural com-
pliance allows them to work beside humans safely. For this
reason, tensegrity robots have been envisioned for assistive
and rehabilitative healthcare by providing hospital service
or direct in-home assistance. Furthermore, U.S. National
Aeronautics and Space Administration (NASA) is developing
tensegrity robots for space exploration missions [8], [9].
Since multiple tensegrity robots can often be packed into a
small volume, NASA has been investigating using multiple
cooperative tensegrity robots for planetary missions [10].

However, mobility is required to operate tensegrity robots
in such applications. In the literature, simulations as well as
physical demonstrations of locomotion of several tensegrity
robots have been introduced [11], [12], [13], [14], [15],
[16], [17]. These works have shown that different modes of
locomotion such as step-wise or punctuated rolling, crawling
and undulating are possible with tensegrity robots, depend-
ing on their structural geometry. Among many possible
tensegrity geometries, this work focuses on a ball-shaped
tensegrity robot, especially a six-strut tensegrity robot as
its structure has a simpler sphere-like geometry than other
tensegrities. This work aims to develop a control for the
structural deformation of the tensegrity robot for the purpose
of providing mobility to the robot.
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The outline of the work is as follows. A brief description
of our tensegrity robot (Fig. 1) is provided in Sect. II. In
Sect. III, a form-finding problem of a six-strut tensegrity
structure is discussed and a dynamic relaxation technique
is applied to find an equilibrium of the structure given an
initial structural geometry and imbalanced member forces.
In Sect. IV, a Monte Carlo approach for sampling a set
of equilibrium configurations of a six-strut tensegrity is
described. The sampled configurations are then evaluated
based on a fitness function to be defined therein. In order
to improve the quality of samples, a learning algorithm
which runs multiple generations of Monte Carlo sampling
is presented in Sect. V. Then, simulation results obtained in
previous sections are tested and validated with our physical
robot in Sect. VI. Finally, conclusions are provided in Sect.
VII.

II. SIX-STRUT TENSEGRITY ROBOT

Our tensegrity robot (Fig. 1) is based on a six-strut tenseg-
rity structure (also referred to as an expandable octahedron
tensegrity) consisting of 6 rigid rods and 24 cables. The
structure has 12 nodes and 20 triangles on its outer surface,
and the triangles can be categorized into two groups: (a) 8
closed triangles each of which is enclosed by 3 cables and
(b) 12 open triangles each of which is enclosed by only 2
cables. In the original structure, each node is connected to
5 neighbor nodes, 4 of them by tensile members (cables),
and the last one by a compressive member (rigid rod). In
our robot, however, each cable includes a linear actuator
that is used to control the length of the cable. The diagram
of edge connection is shown in Fig. 2. The robot is cable-
driven and fully actuated, meaning that all 24 cables are
independently actuated by linear actuators located at the
centers of the edges. Furthermore, the robot has a controller
unit as a payload at the center of the structure. Identical
fiberglass rods, elastomer cables and linear actuators are used
to construct the robot. It is noted here that the connectivity
of the members of the robot is unchanged during motion.

The most natural choice of locomotion for this ball-shaped
robot is a punctuated rolling motion, or a sequence of steps
[18]. A six-strut tensegrity robot can realize such motion by
repeatedly deforming its geometry by actuating its cables or
rods or both [13], [16], [17], [18]. As mentioned previously,
however, only cable actuation is of interest in this work.

Depending on the robot’s structural geometry, it may
or may not succeed in performing a step. Moreover, the
desirable geometry will be different depending on the di-
rection of stepping and the surface the robot is standing
on at the time of stepping. Consequently, it is crucial to
examine which robot geometries realize steps successfully
without destroying the structural integrity and exceeding
actuation limits of the robot. It is this problem which this
work attempts to address. Once the desirable geometry is
known, signals can be sent to the actuators to deform the
robot structure to match the geometry that will result in
a successful step. Furthermore, it is shown in [18] that

the robot can develop different motions, such as forward
movement and turning, by repeatedly performing steps.

A condition for a successful step is to place the ground
projection of the robot’s center of mass (GCoM) outside of
its supporting polygon (or its base triangle), which can be
either an open or a closed triangle. There are three types of
steps available for the robot.
• CO-step leads the robot from a closed base triangle to

an adjacent open base triangle.
• OC-step leads the robot from an open base triangle to

an adjacent closed base triangle.
• OO-step leads the robot from an open base triangle to

an adjacent open base triangle.
The robot often performs an OC-step right after a CO-step
without pausing. This step will be denoted as a COC-step.

Throughout the work, a set of nodal positions of the robot
structure will be referred to as a configuration. Hence each
possible geometric structure has an associated configuration,
but not all configurations are realizable because some may
violate the rod length constraint or result in cable breakage.
If a configuration results in zero net forces at all nodes, then
it will be referred to as an equilibrium configuration.

A further description of our robot is presented in [18].

III. FORM-FINDING BY DYNAMIC RELAXATION

A. Dynamic Relaxation

The purpose of dynamic relaxation (DR) is to find an
equilibrium configuration of a cable net structure in an
iterative way, starting from an initial configuration that does
not necessarily satisfy the force balance condition at all or
a subset of nodes of the structure [19], [20]. External forces
applied to the structure may also be considered in the form-
finding process. This section describes how the DR with
kinetic damping is used to find an equilibrium of a six-
strut tensegrity structure. This type of DR has been shown
to be stable and convergent for systems with large local
disturbances [19], which is the case of tensegrity structures.

The DR with kinetic damping is based on Newton’s second
law. Consider a node i (i = 1, · · · , 12) and assume a force
Fi(t) is applied to the node. Note that the force is a function
of time. If we denote the nodal mass as mi, then the motion
of the node is governed by Newton’s second law.

Fi(t) = miai(t) (1)

In the above equation, ai(t) is the acceleration of node i
at time t. Using the centered finite difference form of the
velocity, the acceleration can be approximated.

ai(t) = v̇i(t) ≈
vi(t+ ∆t/2)− vi(t−∆t/2)

∆t
(2)

In (2), vi(t) is the velocity of node i at time t and ∆t is the
time difference between two updates.

Substituting (2) into (1) gives an iterative form of velocity
update.

vi(t+ ∆t/2) = vi(t−∆t/2) +
∆t

mi
Fi(t) (3)
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In (3), mi has a fictitious value, that is, the mass may or
may not be taken from an actual physical system. Usually,
mi and ∆t are tuned for good convergence of the algorithm
[19]. As a result, if the total force Fi(t) applied to node i
at time t is known, the velocity of the node can be updated
for the next time step using (3).

The position of node i at time t, denoted here as ri(t),
can also be updated using the updated velocity.

ri(t+ ∆t) = ri(t) + vi(t+ ∆t/2)∆t (4)

The DR is an iterative method that aims to find an
equilibrium of the structure from an initial configuration
which may be given arbitrarily. That is, the initial nodal
positions ri(0) for all i may be chosen arbitrarily as long
as they satisfy the rod length constraint. Furthermore, the
initial nodal velocities are set to zero in the DR, that is,
vi(0) = 0 for all i. Because the centered finite difference
form is used for the velocity, (3) is slightly modified for the
first velocity update.

vi(∆t/2) =
∆t

2mi
Fi(0) (5)

In summary, if the initial configuration of the structure
is known and all of the nodal forces are tracked over time,
then the nodal positions, velocities and accelerations can be
computed for the later time steps iteratively.

In the DR with kinetic damping, kinetic energy of the
system is tracked over time.

KE(t) =

12∑
i=1

1

2
mivi(t) · vi(t) (6)

When the peak of the kinetic energy is detected, then all
of the nodal velocities and nodal forces are set to zero. This
is why the method is called kinetic damping. By taking this
step, energy is dissipated from the system, moving the system
towards a local minimum energy state, or an equilibrium.
The iteration restarts from the beginning with the new initial
configuration defined as the latest configuration at the energy
peak. Finally, the whole process is repeated until the kinetic
energy as well as the sum of all nodal force magnitudes
converge to zero within an error bound. At convergence, the
final configuration is regarded as an equilibrium. An example
plot of changes of kinetic energy and the sum of all nodal
force magnitudes over time is shown in Fig. 3.

It is noted here that, because of the way the DR finds
an equilibrium, the intermediate states do not necessarily
represent the actual physical behavior of the structure. Only
the final equilibrium configuration is physically meaningful.

B. Nodal Forces

Because each node is connected to a rod and four cables,
the nodal force Fi(t) consists of two different types of forces.

1) Fsi (t) : Spring forces applied by the cables.
2) Fri (t) : A constraint force applied by the rod.

The total nodal force is then the sum of the two forces.

Fi(t) = Fsi (t) + Fri (t) (7)

Fig. 2. A diagram of edge connection. Cables are connected to nodes and
a linear actuator located at the center of the edge.

Fig. 3. Changes of kinetic energy and sum of nodal force magnitudes
over time during single execution of DR. The quantities are normalized
with respect to the maximum values of each case. Notice that both values
converge to zero, meaning that an equilibrium configuration is found.

Let J i = {i1, · · · , i4} represent a set of neighbor nodes
connected to node i by cables. Then, at each time step t, the
spring force Fsi (t) is the sum of individual cable forces.

Fsi (t) =
∑
∀j∈Ji

Fsij(t) (8)

In (8), Fsij(t) represents the force exerted on node i at time
t by a cable connecting nodes i and j. In order to obtain an
expression for this force, consider Fig. 2 which depicts an
edge configuration of our robot. At each end of the edge are
cables connected to nodes, and the two cables are actuated
by a linear actuator located at the center of the edge. Because
the two cables are identical, when actuated, they stretch the
same in lengths. If the cables are linear with stiffness of
k and rest length of l0, and if the stretched lengths of the
cables and the length of the actuator are denoted as l and d,
respectively, then Fsij(t) has the following expression.

Fsij(t) =

{
k(l − l0)

rj(t)−ri(t)
‖rj(t)−ri(t)‖ if l > l0

0 if l ≤ l0
(9)

l =
1

2
(‖rj(t)− ri(t)‖ − d) (10)

In tensegrity structures, cables can only bear tensile forces.
Therefore, when their lengths become smaller than their rest
lengths, the cable forces are set to zero, as in (9).

In this work, the lengths of the actuators are manipulated
to apply forces to the robot structure, and thus, to deform it.
Specifically, in Sect. IV, a number of 24-dimensional vectors
of the actuator lengths are randomly sampled, and their
resultant equilibrium configurations are found and evaluated.
It is assumed that the actuators can provide large enough
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Fig. 4. Coordinate systems used for describing kinematics of two end
nodes of a rod. A Cartesian coordinate system, with a set of right-handed
orthonormal basis vectors {E1,E2,E3}, is used to describe the position
of the first node. On the other hand, a spherical coordinate system, with
a set of right-handed orthonormal basis vectors {eR, eφ, eθ}, is used to
describe the position of the other node relative to the first one. R0 is the
rod length.

forces to fully operate within their stroke range, which is
the case of our physical robot.

The next type of force applied to node i is a rod constraint
force, Fri (t). This force does not appear in pure tensile
structures and is a unique feature of tensegrity structures.
It is critical to obtain the correct expression for this force, as
it guarantees a constant distance between the two end nodes
of the rigid rod, and thus, the integrity of the whole structure.

In order to describe the constraint force, the coordinate
systems shown in Fig. 4 are used. The position of the
first node of a rod is described by a Cartesian coordinate
system with a set of right-handed orthonormal basis vectors
{E1,E2,E3}. Moreover, the position of the other node
is described relative to the first one by using a spherical
coordinate system with a set of right-handed orthonormal
basis vectors {eR, eφ, eθ}. Then, the constraint forces acting
on end nodes i and k of the rod are described as follows.

Fri (t) = −F rik(t)eR(t), Frk(t) = F rik(t)eR(t) (11)

F rik(t) = mk

[
ẍ sin(φ) cos(θ) + ÿ sin(φ) sin(θ) + z̈ cos(φ)

−R0φ̇
2 −R0θ̇

2 sin2(φ)
]
− Fsk · eR

(12)

eR(t) =
rk(t)− ri(t)

‖rk(t)− ri(t)‖
(13)

In (12), mk and R0 are mass of node k and the rod length,
respectively. The coordinates x, y, z, φ and θ as well as the
force Fsk and eR are functions of time, but their notations
are omitted for better readability of the equation. Because the
nodal positions ri(t) and rk(t) and the nodal velocities vi(t)
and vk(t) are updated iteratively using (3) and (4), the angu-
lar coordinates φ(t) and θ(t) and their derivatives φ̇(t) and
θ̇(t) can also be updated using coordinate transformations.
Moreover, the acceleration of node i,

ai(t) = v̇i(t) = ẍ(t)E1 + ÿ(t)E2 + z̈(t)E3 (14)

is already given by (2). As a result, the rod constraint force
Fri (t) = −Frk(t) can be updated over time.

Our simulations showed that, when the rod constraint
forces are appropriately applied, the maximum error in rod
lengths was 0.12% when running the DR.

IV. MONTE CARLO SAMPLING OF
EQUILIBRIUM CONFIGURATIONS

In Sect. III, the DR with kinetic damping was used
to find an equilibrium of a six-strut tensegrity structure
when an initial configuration and a set of actuator lengths
were given. Clearly, different sets of actuator lengths will
result in different equilibrium configurations. Some of these
equilibrium configurations will allow the robot to make a step
from one base triangle to another, while the others will not.
In order to make a step, GCoM should be placed outside of
the robot structure’s base triangle. The goal of this section is
to find equilibrium configurations that satisfy the preceding
condition using a Monte Carlo sampling approach.

A. Sampling

Our cable-driven six-strut tensegrity robot is fully actuated
with 24 linear actuators, allowing each cable to be indepen-
dently actuated. If the target values of 24 actuator lengths are
known, then the equilibrium configuration associated with
this length set can be found by running the DR.

Let us denote a vector of all 24 actuator lengths as d =
[d1, · · · , d24]T ∈ R24, where di is the target length of the
i-th actuator. To find desirable equilibrium configurations, a
number of instances of the vector d are sampled by sampling
each component di independently from a uniform distribu-
tion with a physically acceptable range. For each sampled
d, the DR with kinetic damping is performed from an initial
configuration of a regular icosahedron, and the resulting
equilibrium configuration is found. Each equilibrium is then
evaluated with a fitness function described in Sect. IV-B. This
process is repeated over a large number of samples. Finally,
the best equilibrium configuration and the sampled vector d
that produced this equilibrium are identified.

B. Evaluation

As discussed in Sect. II, in order to make a step from a six-
strut tensegrity robot, its GCoM should be placed outside of
its base triangle. Assuming masses are uniformly distributed
in rods and cables have negligible masses, the center of mass
of the structure can be easily obtained once nodal positions
at an equilibrium are known.

To evaluate each equilibrium configuration, the following
fitness function is used. First, the center of mass is projected
onto the planes of the outer surface triangles of the structure.
Since, in most cases, the robot steps to and from a closed
triangle [18], only this type of triangle is considered when
evaluating an equilibrium. That is, the center of mass is
projected onto 8 different planes that define the closed
triangles. Next, for each projection, the distances between the
projected point and 3 edges of a closed triangle are measured,
as shown in Fig. 5. If the projected point crosses over an edge
and moves outside of a triangle, that distance is measured
as a negative value. Because the structural geometry should
push GCoM as far as possible from a base triangle for a
robust step, our goal is to minimize this distance towards
a large negative value. For this reason, 24 distances are
computed per equilibrium (3 distances per triangle, 8 closed

5827



Fig. 5. Distances measured between GCoM and three triangle edges.

triangles) and the minimum of these values is assigned
as a score for that configuration. Finally, among a set of
equilibrium configurations, the one with the minimum score
is picked as the best configuration of the set.

C. Simulation Results

To demonstrate the aforementioned procedure, 5,000 sam-
ples of d were obtained. Their resultant equilibrium configu-
rations were found with the DR and evaluated with the fitness
function defined in Sect. IV-B. The physical parameters used
in the simulation were taken from our physical robot and are
listed in Table I. The result is shown in Fig. 6. The minimum
score of all equilibrium configurations was 0.019. Because
the lowest score has a positive value, it is anticipated that
even this best equilibrium configuration will not allow the
robot to make a step as the robot structure’s GCoM will stay
inside of its base triangle even after structural deformation.
To resolve this problem, a learning approach is deployed in
Sect. V.

V. LEARNING ALGORITHM

Due to the high dimensionality of sampled vectors d and
the wide interval of the sampling space, it is unlikely that a
basic Monte Carlo will discover an adequate solution (Sect.
IV). Instead, we use a multi-generation learning algorithm
where the highest performing samples from the previous
generation are saved and new samples are generated from
points that are “close” to the highest performing samples.
After enough generations, we expect most of our new sam-
ples to come from high performing regions. This learning
process can be seen as a multi-step Monte Carlo or as an
evolutionary algorithm where at every generation only the
“winners” are taken from the previous generation.

A. Multi-Step Monte Carlo

For the samples of the first generation, components of
actuator length vector d1, where the subscript denotes its
generation, are all sampled from a uniform distribution of the
same range, [dmin, dmax], where dmin and dmax represent
minimum and maximum lengths of actuators, respectively.
Once all samples of the first generation are obtained and
evaluated according to the fitness function defined in Sect.
IV-B, the equilibrium configuration with minimum score, C∗1 ,
as well as the actuator length vector sample that produced
this equilibrium, d∗1, are identified.

For subsequent generations j (j = 2, 3, · · · ), actuator
length vectors, dj , are sampled around the best sample

TABLE I
PHYSICAL PARAMETERS OF ROBOT

Parameters Values

Rod length (R0) 0.65 (m)
Cable rest length (l0) 0.038 (m)

Cable stiffness (k) 1193 (N/m)
Minimum actuator length (dmin) 0.2 (m)
Maximum actuator length (dmax) 0.3 (m)

Constant offset length (δd) 0.01 (m)

Fig. 6. Scores of 5,000 equilibrium configurations obtained by repeatedly
running DR. In the upper figure, the empty blue circles represent scores
of all of the equilibrium configurations obtained, and the filled red circle
represents the lowest score. The bottom figure is a histogram of the scores
of all configurations obtained.

of the previous generation, d∗j−1. That is, multiple sam-
ples of dj are obtained from a uniform distribution of
[d∗j−1 − δd, d∗j−1 + δd], where δd = [δd, · · · , δd]T is
a 24-dimensional constant vector. Once the pre-determined
number of samples are obtained and evaluated at generation
j, the equilibrium configuration with minimum score, C∗j , as
well as the sampled vector, d∗j , producing this equilibrium
are found. In generation (j + 1), dj+1 are sampled around
d∗j in a similar manner, and the process is repeated until
termination conditions are met or the pre-defined maximum
number of generations is reached.

B. Simulation Results

In our simulation, 30 generations were run with each gen-
eration containing 500 samples. Score distributions of chosen
generations are shown in Fig. 7. For the early generations, all
of the equilibrium configurations found in a single generation
had positive scores. However, as generations progressed, the
number of samples having negative scores in each generation
increased. Moreover, both the minimum and average scores
of each generation decreased as the generations evolved (Fig.
8). The figure shows that the first equilibrium configuration
with a negative score was found in generation 5, and up
to this generation, a total of 2,500 samples were obtained.
This was half the number of samples obtained in Sect.
IV-C, but the quality of equilibrium configurations turned
out to be much better. The minimum and average scores
kept decreasing in later generations and were saturated after
generation 20. The best equilibrium configuration of all the
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(a) Generation 1 (b) Generation 10 (c) Generation 30

Fig. 7. Score distributions of chosen generations. In the upper figures, empty blue circles represent scores of all of the equilibrium configurations obtained,
and the filled red circles represent the lowest scores. The bottom figures are histograms of the scores of all configurations obtained in each generation.
500 equilibrium configurations were obtained in each generation.

TABLE II
ACTUATION POLICY (d∗

29)

Actuator edge node pair (1,5) (1,6) (1,9) (1,11) (2,7) (2,8) (2,9) (2,11) (3,5) (3,6) (3,10) (3,12)
Controlled actuator length (m) 0.291 0.300 0.296 0.207 0.200 0.201 0.294 0.298 0.261 0.251 0.297 0.214

Actuator edge node pair (4,7) (4,8) (4,10) (4,12) (5,9) (5,10) (6,11) (6,12) (7,9) (7,10) (8,11) (8,12)
Controlled actuator length (m) 0.251 0.204 0.204 0.291 0.205 0.293 0.285 0.259 0.294 0.299 0.243 0.203

samples was found in generation 29 and -0.031 was its
score; this most desirable equilibrium configuration placed
its GCoM 0.031m (or 4.77% of the rod length R0) outside of
its base triangle. This configuration is depicted from different
orientations in Fig. 11. The set of actuator lengths resulted
in this configuration is taken as our actuation policy and is
provided in Table II. The node numbers follow Fig. 9.

VI. EXPERIMENTS

A set of experiments was performed with our physical
robot (Fig. 1) to test the actuation policy presented in Table
II. With this actuation policy, the robot was able to perform
either a CO-step or a COC-step, depending on initial actuator
lengths. Notice that the methods discussed in the previous
sections identify what the most desirable geometry of the
robot is in terms of making a step, but they do not provide
information on what the intermediate deformations would
look like while achieving this geometry from an initial
configuration. As a result, it is possible that deforming proce-
dures are different for distinct initial configurations, although
their final deformed geometries will be the same. For our
tensegrity robot, when the actuators were starting from a
fully extended state with initial lengths of dmax, the policy
in Table II resulted in a CO-step of the robot. However,
when the actuators were starting from a half extended state
with initial lengths of (dmax+dmin)

2 , the robot performed a
COC-step with the same policy. In the latter case, at the
time when the robot made the first CO-step, the robot was
still deforming and the width of the landing base triangle was
narrow such that GCoM was able to cross over the second
base triangle with remaining deformation. Consequently, the
following OC-step was automatically performed, and overall
a COC-step was made. In contrast, at the moment when the

Fig. 8. Learning of minimum (blue triangles) and average (red circles)
scores over 30 generations.

Fig. 9. Node numbers of the robot structure used in Table II.

robot performed the first CO-step in the former case, the
width of the landing base triangle had already widened and
GCoM was not able to cross over the next base triangle. The
trajectories of base triangle nodes as well as GCoM on the
ground plane were obtained with a Vicon R© motion tracking
system for these two initial actuator length cases (Fig. 10).

The distance between GCoM and the rotation axis of
a base triangle after completion of the deformation was
measured as 0.060m which is about twice as large as our
estimated value of 0.031m from the simulation. This differ-
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(a) CO-step

(b) COC-step

Fig. 10. Trajectories of base triangle nodes and GCoM when the robot
structure is deformed with the actuation policy provided in Table II.
Depending on initial actuator lengths, the robot performs either a CO-
step or a COC-step. In the figures, empty black circles, blue stars and
thick red dashed lines represent node positions, GCoMs and rotation axes,
respectively. Thin dashed lines show moving directions of nodes and
GCoM. Thin gray triangles are base triangles the robot crosses over while
performing steps. Node numbers follow Fig. 9. A video of the robot in
action can be found at http://best.berkeley.edu/.

ence may have caused by the existence of the gravity and the
payload on the robot, which was not considered when feasi-
ble equilibrium configurations were found in the simulations.
When the payload was not placed at the center of mass of
the robot, it yielded asymmetry of the structure, causing the
robot to favor steps in certain directions. Therefore, in order
to properly test the simulated policy on the physical robot, an
effort was made to reduce imbalance of the robot structure
due to the payload, and the payload was placed as close to
the center of mass of the robot as possible. Low resolution
linear actuators also contributed to the error as they were
not able to deform the robot structure to precisely match
the simulated geometry. The resultant deformed structure
corresponding to the actuation policy, obtained from both
the simulation and physical robot, is presented in Fig. 11 in
different views. Furthermore, all of the cable lengths of the
deformed structure were measured from both the simulation
and hardware robot, and their comparison is given in Table
III. Although the lengths match closely in both cases, a
maximum of 5.25% error exists.

VII. CONCLUSIONS AND FUTURE RESEARCH

In this paper we show how a dynamic relaxation (DR)
algorithm in combination with Monte Carlo sampling can be
used to learn robust movements for a ball-shaped tensegrity
robot. Not only does this method generate a robotic “step”

(a) Perspective view

(b) Top view

(c) Front view

Fig. 11. The equilibrium configuration with the minimum score of all
generations. The figures on the left side are simulation results while the
figures on the right side show deformation of our physical robot. In the
simulation figures, thick black lines, thin dashed lines and red circles
represent rods, cables and nodes of the robot structure. Blue stars and gray
triangles are center of masses and base triangles of the robot, respectively.

that has a high margin of reliability, the decoupling of form-
finding, center of mass computation and actuation decisions
allows for more analysis of the learned control algorithm.
To achieve these results, we show how the DR can find
equilibrium configurations of our six-strut tensegrity robot
when its actuator lengths are pre-specified. Then, a number
of actuator length vectors are sampled and their resultant
equilibrium configurations are found by repeatedly running
the DR. The equilibrium configurations obtained are then
evaluated based on the fitness function which measures how
favorable each configuration is in producing a step. In order
to find equilibrium configurations which improve robustness
of the step, a multi-generation learning algorithm is used.
With this algorithm, the scores of the equilibrium configura-
tions are improved over generations by taking the “winners”
of the previous generation to the following generation. From
the aforementioned procedure, the actuator length vector
which deforms the robot structure in the most desirable
way is determined as our actuation policy. The policy is
then tested on our physical robot and it allows the robot
to successfully achieve a step. In [18], it was shown that the
robot can develop different motions by combining multiple
steps we call “punctuated rolling” motion.

In our experiments, it was observed that the type of step
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TABLE III
EDGE LENGTHS COMPARISON BETWEEN

SIMULATION AND HARDWARE ROBOT

Edge Simulated Hardware Error (%)
node pairs lengths (m) lengths (m)

(1,5) 0.431 0.432 0.232
(1,6) 0.433 0.446 3.002
(1,9) 0.425 0.421 0.941

(1,11) 0.342 0.345 0.877
(2,7) 0.340 0.335 1.471
(2,8) 0.366 0.353 3.552
(2,9) 0.432 0.441 2.083

(2,11) 0.443 0.449 1.354
(3,5) 0.417 0.404 3.118
(3,6) 0.381 0.401 5.249

(3,10) 0.434 0.433 0.230
(3,12) 0.363 0.363 0.000
(4,7) 0.398 0.401 0.754
(4,8) 0.364 0.354 2.747

(4,10) 0.335 0.348 3.881
(4,12) 0.436 0.434 0.459
(5,9) 0.336 0.342 1.786

(5,10) 0.434 0.443 2.074
(6,11) 0.423 0.418 1.182
(6,12) 0.399 0.403 1.003
(7,9) 0.433 0.439 1.386

(7,10) 0.437 0.437 0.000
(8,11) 0.397 0.392 1.259
(8,12) 0.346 0.352 1.734

the robot performs is dependent on the initial lengths of
actuators even though their final lengths are the same. While
our methods can successfully specify the final deformed
geometry of the robot for making a step, they are not able
to describe the deforming procedures between the initial and
final configurations. The authors aim to improve methods
presented herein to achieve more consistent steps by further
studying deforming procedures.

Furthermore, the fitness function considered in this work
only measures how far GCoM moved outside of a base
triangle. In terms of energy efficiency, a COC-step is pre-
ferred to a CO-step as the robot moves farther with the same
actuation policy. For performing of a COC-step, the landing
base triangle should not be so wide as to allow GCoM to
cross over the second base triangle during the deformation
(Fig. 10). For a robust COC-step, this condition may be
explicitly added to the definition of the fitness function.
Moreover, energy consumption of the linear actuators may
also be considered in the fitness function to develop energy
efficient actuation policies.
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