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TECHNIQUES FOR INTEGRATING 
QUALITATIVE REASONING AND 
SYMBOLIC COMPUTATION IN 
ENGINEERING OPTIMIZATION 

ALICE M. AGOGINO and ANN S. ALMGREN 

Department oJ Mechanical Engineering, 
University of California, Berkeley, C A  94720 USA 

aagogino@euler.berkeley.edu 

This paper presents techniques that extend theories from the fields of artificial intelligence (AI) and 
engineering optimization lor automating design decision making at three levels of reasoning: qualitotiue, 
functional, ond numerical. Qualitative reasoning about constraint activity is implemented in SYMON 
(Symbolic MONotonicity analyzer) through monotonicity analysis and the maximal activity principle. 
Functional reasoning is employed in SYMFUNE (SYMbolic FUNctional Evaluator) in the form of 
algebraic manipulations of the constraint functions and the Karush-Kubn-Tucker optikality conditions. 
The techniques are applied to a parametric multiobjective optimal design problem from the literature 

KEYWORDS: Qualitative reasoning, artificial intelligence, symbolic computation, parametric and 
multiobjective optimization. 

1 INTRODUCTION 

This paper focuses on three kinds of human and computer-assisted reasoning: 
qualitative, functional, and numerical. A1 approaches in qualitative reasoning and 
symbolic computation are proposed as the mechanisms for integrating all three levels 
into the SYMON and SYMFUNE computer-aided design tools. 

1.1 Qualitative Reasoning 

Reasoning at the qualitative level is defined as "reasoning about objects and their 
qualities or parameters in a way that does not rely on specific numerical values". 
Programs utilizing artificial intelligence (AI) techniques have concentrated on the 
qualitative level by means of pattern matching algorithms that operate on list 
structures. Production rules in knowledge-based systems have recently demonstrated 
potential in applying A1 to engineering design1*. The "knowledge" is written in a 
declarative format and can be read directly from the data base, making it easy to 
understand the underlying knowledge behind the program. (See Gero et al.' for a 
comparison of procedural and declarative programming languages for optimization 
problems.) Although object-oriented programming techniques and frame representa- 
tions do  much to capture the fundamental physical relationships between objects in 
rule-based systems4v6, this knowledge, for the most part, is shallow with little apparent 
relationship to the underlying mathematical, engineering, or physical principles 
involved. 
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1 18 A. M. AGOGINO AND A. S. ALMGREN 

Recent work in qualitative process theory extends these rule-based techniques to 
take into account monotonic information of the behavior of system variables and to 
qualitatively reason about For continuous functions, qualitative trends can 
be defined by the sign of the gradient terms of system interrelationships. For example, 
an engineer might reason that the potential energy of a spring, E, increases with the 
displacement from equilibrium, x (aE/dx L 0) or that the tangential stress, s, in a 
thin-walled cylinder decreases as the thickness t of the cylinder increases (ds,/dt 5 0). 
In this context, qualitative information does not depend on knowing the exact 
functional form of the system interrelationships, only the qualitative trends. Thus one 
could still make the same qualitative statement given previously about the interrela- 
tionshiv between votential enerav of a svrine and disdacement even for a nonlinear 
spring in which thk functional rekionshk was not preksely known. A few researchers 
have succeeded in combinine aualitative reasonine in a rule-based avoroach with " .  - . . 
numerical optimization codesg-lo. Written in procedural languages in order to 
communicate directly with the numerical algorithms involved, these programs do not 
have the ability to explicitly reason at the functional level except to the extent that 
FORTRAN or PASCAL statements may be used to provide a mapping between input 
and output at a numerical level. 

1.2 Reasoning with Funcrional Information 

Often the strongest information designers have about a physical system is at the 
functional level. A designer might reason that the potential energy associated with 
most springs varies with the square of the displacement from equilibrium (E - x2) and 
that the tangential stress in thin-walled cylinders varies inversely with the thickness 
(s, N I/t). Computer programs developed to perform symbolic computation in the 
early 1960s are examples of the first expert systems ever developed. Originally based 
on heuristics, these programs now employ intricate mathematical algorithms to 
perform symbolic computation at an impressive level of technical proficiency. 
Although symbolic computation allows computer-based reasoning at the functional 
level, very few applications can be found in the engineering literature. Notable 
exceptions are in the fields of mechanical dynamics and control theory"-'4. 

1.3 Numerical Analysis 

By far the most prevalent use of computers in the engineering community is at the 
numerical level, e.g., numerical optimization (MINOS'' and GRG2I6), finite element 
and difference programs (ANSYS17 and NASTRAN18), and numerical simulation 
packages (Para~ol '~) .  For the most part, these programs map one set of input 
numbers to another set of output numbers. The underlying knowledge embedded in 
these programs is hidden within the structure of the programs themselves. The source 
code is often not available for the majority of users and evensif it were it would be 
difficult to directly appreciate the underlying knowledge behind the programs by 
reading the code. 

In what follows, techniques to integrate all three levels of human reasoning in a 
computer-aided optimal design system are described. SYMON reasons qualitatively, 
SYMFUNE performs functional evaluations, and FORTRANIZER translates to 
standard FORTRAN code if further numerical analysis is desired. The purpose of 
these programs is to provide insight, in addition to solutions, in order to complement 
and enhance the expertise of the human designer. 
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QUALITATIVE REASONING AND SYMBOLIC COMPUTATION 119 

2 ENGINEERING OPTIMAL DESIGN 

Analytical and numerical optimization techniques have significantly contributed to 
recent advances in computer-aided design. Radford and GeroZ0 refer to design as a 
goal-oriented problem solving activity. The goal is to find a design that is feasible 
(satisfying the imposed equality and inequality constraints) and optimal (ranking 
highest in design objectives relative to alternate feasible designs). 

As with other applications of computer-aided design, optimization has often been 
considered primarily a numerical process. Yet human designers who use qualitative 
and functional levels of reasoning, rather than numerical processing, achieve added 
insight into the important aspects of the problem's structure and solutions in 
parametric form. Unfortunately, it  does not take a large increase in the complexity of 
a design problem to confound even the most experienced designer, and numerical 
schemes are the alternative. Although the literature reflects interesting work in 
numerical sensitivity analysis, most techniques only apply locally and, in general, the 
problem must be numerically re-solved for large changes of parameters because of the 
nonlinearities present in most engineering design problems and difficulties in predict- 
ing changes in constraint activity. 

Computer techniques that can reduce optimization problems at a non-numeric 
level are proposed. The A1 language FranzLISP and the symbolic computation 
language VAXIMA are used to implement these techniques into a set of programs 
that integrate qualitative, functional and numerical reasoning in a computer-aided 
optimal design system called SYMON-SYMFUNE (Figure 1). 

The input to SYMON is a description of the optimal design problem in either 
functional or qualitative form. SYMON performs symbolic monotonicity analysis on 
this information. The output from SYMON is useful in providing guidance about 
qualitative trends for design optimization and constraint activity and is input to the 
SYMFUNE program. If not already provided, this should be supplemented with 
functional equations when available. SYMFUNE performs symbolic optimization 
using a combination of augmented Lagrangian methods, symbolic monotonicity 

Uses Monotonicity 
Infomlation 

Integration 
for Numerical 

Uses Functional with Knowledge- 
Optimization & 

Information Based Systems Analysis Codes 

- - 
Figure 1 SYMON-SYMFUNE flow chart. 
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120 A. M. AGOGINO AND A. S. ALMGREN 

analysis and application of the Karush-Kuhn-Tucker optimality conditions. Al- 
though SYMON and SYMFUNE programs stand effectively on their own, they can 
also be used as preprocessors for integration with numerical-oriented optimization 
codes. Their use in the derivation of design flow charts and in parametric and 
multicriteria design will be demonstrated on the multiobjective hydraulic cylinder 
design problem. Integration with knowledge-based systems is suggested in the 
Discussion. 

2.1 SYmbolic MONoroniciry Analysis ( S Y M O N )  

Monotonicity analysis is an iterative partial optimization technique to reduce the 
dimensionality of the optimization problem and detect flaws in the problem formula- 
tion. The unconditionally active constraint sets and the combinations of active 
constraints which yield potentially feasible and bounded solutions are found based 
solely on the monotonicities (qualitative level) of the objective function and con- 
straints. In order to formalize the methodology, the following terms concerning 
monotonic properties and constraint activity in optimization are introduced for 
future reference. Without loss of generality, positive systems are assumed. 

Definitions: 
a. The monotonicity of a continuously differentiable function f(x) with respect to 

(w.r.t.) variable x, is the algebraic sign of a f fax,. A discrete or continuous function 
f(x) is strictly globally monotonically increasing over a domain R if and only if ( i n  
f(x,) < f(x2)V{x1, x2  ER: x2 > x,} and strictly globally monotonically decreasing 
iff f(x,) > (x,)V{x,, x,ER: x2  > x,}. The monotonicity of a function w.r.t. a 
variable is designated by a positive or negative superscript for the variable in the 
argument list of the function. For example, the term f(x:, x;) implies that the 
function is monotonically increasing with respect to x ,  and decreasing with respect 
to x,. 

b. A positive variable x, is said to be bounded above by a constraint gi(x) 5 0 if it 
' achieves its maximum value at strict equality, i.e., when the constraint is active. A 

positive variable x, is bounded below by gi(x) 5 0 if it achieves its minimum value 
at strict equality. Thus if g,(x) is monotonically increasing with respect to a 
variable xj, then the inequality constraint gi(x) 5 0 bounds x j  from above. If gi(x) 
is monotonically decreasing with respect to a variable x,, then the inequality 
constraint gi(x) 5 0 bounds x, from below. 

c. An inequality constraint gi(x) 5 0 is active at x, if gi(xo) = 0. An inequality 
constraint gi(x) 5 0 is inactive at x, if gi(xo) < 0. 

d. A problem is bounded at optimality by a set of J active constraints {g, = 0 with 
indices j E J E M, where M is the set of indices for all of the constraints) f, for each 
variable, optimization does not drive that variable to plus or minus infinity (or 
degeneracy for positive systems). 

e. A constraint gi(x) 5 0 is said to be unconditionally active at optimality if elimina- 
tion of that constraint will lead to an unbounded or degenerate solution at 
optimality. An equality constraint hi(x) = 0 is active and relevant at optimality if 
elimination of the constraint will lead to an unbounded or degenerate solution at 
optimality. In this sense, the equality can be changed to an active inequality 
constraint, the direction of which defines the directionality of the equality. An 
irrelevant equality constraint is one that does not bound any variable in the 
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QUALITATIVE REASONING AND SYMBOLIC COMPUTATION 121 

objective function to be minimized (in numerical terms the associated Lagrange 
multiplier is zero). An irrelevant equality may be used to define a system variable, 
but the value of that variable has no influence on the objective function at 
optimality. For convenience, an irrelevant equality constraint will be called 
"inactive" at optimality. 

f. A set of J constraints { g j : j e  J EM) is said to be conditionally active at optimality if 
elimination or all of the constraints in the set will lead to an unbounded or 
degenerate solution at optimality. 

g. The dimensionality of an active constraint set is the number of degrees of freedom in 
the solution of the optimization problem, as determined by the number of variables 
minus the number of nonredundant active constraints. 

h. An optimal solution candidate is a sufficient set of equations representing enough 
constraints to bind every relevant variable so that optimization of the objective will 
be bounded at optimality. 

i. The domain of optimality is the set of active inequalities which define the range of 
parameter values where a certain solution is optimal and bounded. 

The foundation for monotonicity analysis is two rules for defining well-constrained 
optimization problemsz1. 

Rule One: If the objective function is monotonic with respect to a variable, then there 
exists at least one active constraint which bounds the variable in the direction opposite of 
the objective. 

Rule Two: If a variable is not contained in the objective function then it must be either 
bounded from both above and below by active constraints or not actively bounded at all 
(i.e. all constraints monotonic w.r.t that variable must be inactive). 

WildeZz has proposed a third rule (the maximal activity principle) to eliminate 
overconstrained cases. It restricts the dimensionality of any set of active inequalities to 
be non-negative. 

Maximal Activity Principle: The number of nonredundant active constraints cannot 
exceed the total number of variables. 

Although the above rules are qualitative in nature and do not appear to be 
consistent with the precise mathematics of optimization theory, they in fact, represent 
necessary conditions for optimality of monotonic systems, a special case of the 
Karush-Kuhn-Tucker optimality conditions in nonlinear programming. The first 
two rules provide logical procedures for identifying unconditionally active inequality 
constraints and sets of conditionally active constraints. They also help determine 
relevance and directionality of equality constraints (the direction of the inequality that 
could replace an equality constraint and lead to the equivalent optimal solution). 
Proofs of these rules can be derived by constructing an optimization problem with 
monotonic functions and applying the Karush-Kuhn-Tucker optimality conditions. 
Differentiation of the Lagrangian w.r.t. variables in the objective function gives the 
conditions in rule one, and differentiation with respect to variables that are not in the 
objective leads to rule two. The maximal activity principle is used to eliminate 
infeasible subsets of constraints that would lead to overconstrained cases. 
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122 A. M. AGOGINO AND A. S. ALMGREN 

Additional Optimization Heuristics. Heuristics are often adopted on a problem by 
problem basis in optimizationz3. In fact, the Karush-Kuhn-Tucker optimality 
conditions can be traced to a heuristic principle often stressed by Richard Courant 
. . . in a variational problem where an inequality is a constraint, a solution always behaves 
as if the inequality were absent, or satisfies strict equalityz4. The following heuristic is 
useful in eliminating constraints whose monotonicities are redundant to those in the 
objective. Application of the monotonic redundancy principle is a form of default 
reasoning. The simplifications obtained are considered valid until the resulting 
solution violates a constraint assumed inactive from application . . of the heuristic. 

Monotonic Redundancy Principle: If a minimizing (maximizing) objective function is 
monotonic w.r.t. a variable x i ,  then it is unlikely to be limited by a constraint gj  < 0 which 
has the same (opposite) monotonicity w.r.t xi. If the constraint gj  has the same (opposite) 
monotonicities as those in the minimizing (maximizing) objective function w.r.t all of its 
variables, then as afirst assumption consider the constraint to be inactice:. 

" . ? i ~  
. . . . ,/, 

These rules have been automated by Choy and AgoginoZ5 in the & r < & ~ ~  SYMON 
(SYmbolic MONotonicity analyzer), written in VAXIMA language runri~iigon DEC 
Vax minicomputers under the UnixTM 4.3 BSD operating system. VAXIMQ,12*26 is a 
symbolic math language written in FranzLISP2' which supports the symbolic 
manipulation necessary to perform analysis at the qualitative and functional levels. 
The input to SYMON is the problem statement: the objective function to be 
minimized and the inequality and equality constraints. This input can be expressed 
either in functional form or qualitatively in terms of the monotonicities of each 
variable. SYMON differentiates the functional forms symbolically in order to obtain 
monotonicity information when necessary. 

The o u t ~ u t  from SYMON is a list of combinations of active and inactive 
constraintsia supeiset of the final optimal solution candidates) which yield potentially 
feasible and bounded solutions. SYMON also o u t ~ u t s  the solutions in final functional 
form, when possible, for the constraint-bound solutions, and in reduced functional 
form for those solutions with positive degrees of freedom. 

Process for Automating Monotonicity Analysis. The process of applying these rules 
exhaustively is shown in Figure 2. First the monotonicities of the terms are 
determined where possible and stored in list structures for further analysis. Unre- 
solved monotonicities are recorded as question marks. A graphical monotonicity 
table is constructed for the benefit of the user (an example of this display is given in 
Section 3). The formal statement of the problem in terms of the relevant monotonic 
functions is given below. 

Minimize Z ( x i )  subject to g ( x i )  < 0, h(xi) = 0, and x > 0 

The monotonic redundancy principle is applied to the list structures next, followed by 
rules one and two. Unconditionally active constraints are found by refutation. Each 
constraint is assumed inactive. If no potential optimal solution candidates can be 
found, then the constraint must be active. Finally the maximal activity principle is 
applied to all subsets determined previously. During all operations checks on the 
validity of the default assumptions are made and adjustments are made if necessary. 
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QUALITATIVE REASONING AND SYMBOLIC COMPUTATION 123 
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Figure 2 SYMON's monotonicity analysis process. 
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2.2 SYMbolic FUNctional Eualuation (SYMFUNE) 

Determine mnotonicities. 
wnstruct data lists, and 

monotonicity table 

At this point the search space for feasible solutions has been reduced, and those cases 
not listed by SYMON will never yield feasible and bounded solutions. Numerical 
optimization routines could be employed to complete the solution. However, it is 
advantageous to complete the problem at the functional level where possible. 
Monotonicity analysis exploits the qualitative information in the problem, but 
functional evaluations can extend the analysis of the problem one step further before 
numerical processing is required. 

Once the list of potential solutions has been derived by SYMON, SYMFUNE 
(pronounced "symphony") extends the analytical solutions of the optimization 
problem, first deciding which of the potential solutions are, in fact, feasible and 
bounded. If the solution is constraint-bound, then it is assumed to be bounded at the 
parametric level. If the solution is not constraint-bound, the objective function is re- 
evaluated by substituting in all active constraints, and the derivative of the objective 
function with respect to each remaining degree of freedom is set equal to zero (first- 
order necessary conditions for optimality). In theory, back-substitution would not be 
necessary if implicit differentiation was used instead. If the revised objective function is 
independent of the remaining free variables, then there are an infinite number of 
solutions, which must be expressed in parametric form, and limited only by the 
restrictions that the free variables satisfy the inactive inequality constraints. This 
unusual situation is illustrated in the following simple example: 

Minimize f(x:, x:) = ( x , ) ~  + x2 

subject to gl(x;, x;) = C - - x2 s 0 
x > 0 
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124 A. M. AGOGINO AND A. S. ALMGREN 

Application of rule one by SYMON reveals that the constraint g, is unconditionally 
active in order to bound the variables x, and x, from below. SYMFUNE substitutes 
the resulting equality constraint into ihe obkctive function to get the following 
reduced optimization problem: Minimize f(x) = C, subject to x > 0. Any non- 
negative value of x that satisfies constraint g, will yield the same constant value, C, for 
the objective function to be minimized. SYMON, using only monotonic information, 
does not detect this unusual feature for this problem. SYMFUNE, using functional 
information, can detect that the constraint is of the same functional form as the 
objective, revealing that the optimal solution is not unique. 

If the function does depend on the free variables, and the derivative can be set equal 
to zero then the gradient equations are used to eliminate the remaining degrees of 
freedom and the solution is completed. If the derivative cannot be set equal to zero for 
any set of non-negative design variables then this case is unbounded or degenerate, 
revealing a hidden monotonicity. In this event, substitution of the unconditionally 
active constraints into the objective function has caused the objective to become 
monotonically increasing or decreasing and one or more inequality constraints must 
be made active. This case is illustrated in the following simple example: 

Minimize f(x:, x;) = x,/x, 

subject to g,(x;, x i )  = x,/(x,)~ - 1 5 0 
x > 0 

Application of rule one by SYMON reveals that constraint g, is unconditionally 
active in order to bound x, from below and x, from above. After SYMFUNE 
substitutes this equality into the objective, the reduced optimization problem is 
unbounded Minimize Ilx,, subject to x, > 0. Again it took functional information to 
reveal a hidden monotonicity not detected at the monotonic level in the original 
problem formulation. This example illustrates that the rules of monotonicity analysis 
are necessary but not sufficient conditions for a well-constrained optimization 
problem. 

Once it is known which solutions are bounded, SYMFUNE must decide under 
what conditions, in terms of the given parameters and weighting factors, each solution 
is feasible and optimal. At this point, a solution is considered feasible if it satisfies the 
inactive inequality constraints and it is these parameter restrictions that comprise the 
feasibility conditions. 

The Lagrange multiplier method with the Karush-Kuhn-Tucker (KKT) condi- 
tions is used in SYMFUNE to decide when each solution is optimal. The inequalities 
governing when each solution is feasible and optimal are referred to collectively as the 
domain of optimality. With this method, a reduced Lagrangian can be constructed on a 
case-by-case basis, since the number of feasible and bounded cases and their 
associated active constraints are known. The reduced Lagrangian is constructed by 
first expressing the objective function in terms of as few free variables as possible, by 
substituting in the relevant equality and unconditionally active inequality constraints, 
then adding to the objective function a term corresponding to each constraint active 
in this specific case. The term is constructed by multiplying the I'b inequality 
constraint (in the form gi(x) 5 0) by a (Lagrange) multiplier pi. Once the reduced 
Lagrangian is constructed SYMFUNE sets the derivative with respect to each of the 
free variables equal to zero. The resulting equations are used to solve for each of the 
multipliers, which are used to determine the optimality of a case. The mathematical 
optimization problem solved by SYMFUNE can be expressed formally as follows: 
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QUALITATIVE REASONING AND SYMBOLIC COMPUTATION 125 

Given an objective function /(x), XER", to be minimized, subject to 

The augmented Lagrangian is defined as 

Assuming that the constraints are independent at point x*, the Karush-Kuhn- 
Tucker optimality conditions specify that x* is a relative optima of f(x) and satisfies 
the constraints g(x) s 0 and h(x) = 0 if and only if 2 8 . 2 9 :  

where 

Note that the complete Lagrangian contains terms for the equality constraints, 
while the reduced Lagrangian used in SYMFUNE is evaluated using those con- 
straints and hence does not contain them explicitly. 

If any of the Lagrange multipliers for a specific case is unconditionally negative then 
that case is never optimal (i.e. condition (6) cannot be satisfied). If any of the 
multipliers is unconditionally positive (regardless of the value of the parameters) then 
no new restriction is added for the domain of optimality. Otherwise, setting each 
multiplier greater than zero provides the additional restrictions on the domain of 
optimality. This domain is defined in full by the feasibility conditions: that the inactive 
inequality constraints be satisfied by the completed solution; and the optimality 
conditions: that the multipliers be non-negative. 

The next step is to present these conditions in a form that will best enhance decision 
making in the design process. With the possible exception of boundaries and problems 
with infinite solutions, the KKT conditions provide mutually exclusive domains of 
optimality which can be used to construct a parametric design flow chart or 
equivalent. At its present stage of development, SYMFUNE summarizes this informa- 
tion in a parallel parametric chart within the degrees of freedom hierarchy established 
by SYMON. SYMFUNE output for the multiobjective hydraulic cylinder design 
example is provided in the next section. 

3 APPLICATION T O  MULTIOBJECTIVE HYDRAULIC 
CYLINDER DESIGN 

SYMON and SYMFUNE will now be demonstrated on a hydraulic cylinder 
multiobjective design problem30, where the goal is to design a hydraulic cylinder with 
minimum cross-sectional area of the wall and maximum lifetime, here expressed as 
minimum tangential stress. The SYMON-SYMFUNE solution to this design prob- 
lem demonstrates the strength of symbolic computation in producing parametric 
design charts which can in turn be used to reduce the numerical complexity of creating 
Pareto-optimal plots of the conflicting objectives. The hydraulic cylinder to be 
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Figure 3 Hydraulic cylinder. 

designed is a thin-walled pressure vessel (Figure 3) with inside diameter i and 
thickness t subject to a tangential stress sand using a fluid under pressure p to push a 
piston with output forcef: 

In addition to positivity constraints the design is subject to four engineering 
constraints. Because the cylinder is being used to support some load, the output force 
must be greater than or equal to the minimum load F,,,. Due to manufacturing 
limitations, the cylinder thickness cannot be smaller than some minimum thickness 
T,,,. There is an upper limit on the pressure source available P,,,, and the tangential 
stress is to be bounded above by some maximum elastic stress S,,,. There are two 
equalities relating force and stress to pressure, inside diameter and thickness. The 
formal qualitative statement of the problem is as follows, where the 
superscript + (or -) means that the function is monotonically increasing (or decreas- 
ing) w.r.t. the positive variable. The multiple objective function Z(z:, z:) is monoton- 
ically increasing with respect to each of the two single objectives: z,(x) and z,(x). 

The equality constraints can be written as sets of inequality constraint doubles 
(h,, = h, and h,, = - h,, i = 1,2) where no more than one of each double can be active 
and relevant at optimality. 
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QUALITATIVE REASONING AND SYMBOLIC COMPUTATION 127 

3.1 Symbolic Monotonicity Analysis 

SYMON produces a monotonicity table for the benefit of the user (Figure 4) that 
reflects the monotonicities shown in Eqs (8)-(14). The sign in each column represents 
the monotonicity of each variable with respect to the objective or constraints 
associated with each row. Because the direction of the equalities is not known before 
monotonicity analysis is performed, SYMON initially places question marks in the 
columns associated with the equalities. 

Figwe 4 Monotonicity table. 

When monotonicity analysis is performed by SYMON, the output is a list of seven 
combinations of inactive constraints (Figure 5): one 2 d.0.f. case (CASE PST), three 1 
d.0.f. cases (CASES PT, PS, ST), and three 0 d.0.f. cases (CASES P, T, and S). (Here 
the letters of each case represent the inactive constraints.) The force constraint (9) is 
set unconditionally active, because no bounded solution can be found if the constraint 
is assumed inactive. In order to satisfy rule two, inequalities (15) and (18) are also set 
unconditionally active and the associated doubles (16) and (17) are eliminated from 
the problem for all cases. A diagram showing the hierarchy of these cases is shown in 
Figure 6. The 0 d.0.f. cases represent subsets of the 1 d.0.f. cases up to the limits 
imposed by the maximal activity principle. Monotonicity analysis and the maximal 
activity principle have reduced the number of possible cases from 64 (or 26) to 7. 

Because the problem is structurally different if the problem is optimized for each 
objective independently, monotonicity analysis must also be performed on each single 
objective in order to find the extreme points (or asymptotic limits) of the Pareto- 
Optimal curve. When considering the cross-sectional area objective z , ( i + ,  t'), 
SYMON finds only four cases: one 1 d.0.f. case (CASE PT) and three 0 d.0.f. cases 
(CASES P, T, and S). SYMON finds the single objective problem unbounded when 
the stress objective z,(s+) is considered and thus there are no potential optimal 
solution candidates for this case. Let us explore this latter case in more detail to 
illustrate the reasoning behind SYMON's analysis of the problem. According to the 
monotonic redundancy principle, constraint (17) is considered inactive because of its 
positive monotonicity w.r.t. s. In applying rule one, constraint (18) is set uncondition- 
ally active (verifying the previous assumption that the double (17) is inactive). Rule 
two is applied to verify that all variables that are not in the objective but in active 
constraint (18) are sufficiently constrained so that they are bounded from above and 
below. If SYMON sets the inequality constraint (15) active and the double (16) 

. inactive in order to bound i and p from below, the force constraint (9) must be set 
active in order to bound f from below. The thickness t is bounded from below by 
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A. M. AGOGlNO AND A. S. ALMGREN 

ANALYSIS SUMMARY : .........................,...................*.*............................. 
Table of combinations of active constraints which yield results: ' 

case inactive constraints active constraints d.0.f ................................ -- --- -- -- ----- -- - -- -- -- - -- -- 
' I  [4,Z 31 11,5, 61 2 

Table of other combinations of active constraints: 

cases with 1 or more degrees of freedom 

case inactive constraints active constraints d.0.f - - -- -- --- - - - - --- - - --- -- - - -- ............................. 
' 2 12~31 [I, 4,5,6] 1 

Figure S SYMON output for multiobjective hydraulic cylinder problem. 

, CASi T , CASi S , CAS] P , 
ACTIVE INACTIVE ACTIVE INACTIVE ACTIVE INACTIVE 

s 

CASE ST CASE PS CASE PT 

Figure 6 Seven possible cases for the multiobjective hydraulic cylinder problem. 
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QUALITATIVE REASONING AND SYMBOLIC COMPUTATION 129 

active constraint (18) but no constraint in the system can bound t from above. Thus 
optimization for the stress single objective case would lead to an infinite value for the 
thickness t. 

3.2 Symbolic Functional Evaluation 

The formal statement of the multiobjective hydraulic cylinder problem with function- 
al information is given below. A thin-walled cylinder assumption is used in the 
tangential stress equation in constraint (25). The conflicting objectives are multiplied 
by a weighting factor and the sum minimized. Convexity guarantees that any feasible 
point satisfying the Karush-Kuhn-Tucker conditions is also a global minimum and 
thus the set of all optimal points obtained by parametrically varying the weighting 
factors on the objectives is guaranteed to be part of the Pareto-optimal set. 

Minimize Z = a,(it + t2) + a2s (19) 

1; i, t, P, s 
subject to g, = F,,, - f 5 0 (20) 

9, = Tmin - t 5 0 (21) 

93 = P - P,,, 5 0 (22) 

g4 = S - S,,, 5 0 (23) 
h, = f - rri2p/4 = o (24) 
h ,  = s - ip/2t = 0 (25) 
f, P, s, i, t > 0 

where a, and a, are weighting factors on the two conflicting objectives (a, + a, = 1). 
Because SYMON finds g, to be unconditionally active for all cases, SYMFUNE 

sets f = Fmi,  for all possible cases. This equality, along with the two relevant system 
equations h, and h,, is substituted into all other expressions. The reduced Lagran- 
gean, then excluding the positivity constraints is: 

The boundedness test (back-substitution into the objective and applying first-order 
conditions) in SYMFUNE quickly reveals that, CASES PST and PT  are unbounded, 
revealing hidden monotonicities. Five cases can now be considered for feasibility and 
optimality, and the Karush-Kuhn-Tucker test finds that CASES ST and T have 
multipliers unconditionally negative, so these cases are never optimal. This implies 
that minimization of cross-sectional area at a functional level specifies that thickness 
should always be set to its lower limit, a result undetected by SYMON at the 
qualitative level. SYMFUNE's output for CASE T is given in Figure 7 (note that a1 is 
a, and a2 is a,). Three final solutions are output from SYMFUNE, each with an 
accompanying set of inequalities which define the domain of optimality and the values 
of the Lagrange multipliers in parametric form. See Figure 8 for sample output of 
SYMFUNE for the optimal candidate CASE PS and Figure 9 for a parametric chart 
summarizing all of SYMFUNE's solutions. SYMFUNE also detects that there are 
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A. M. AGOGINO AND A. S. ALMGREN 

a1 Fmin 
mu = - .------------ 
3 

R Smax 2 

The optimality conditions are: 

NOTE: mu is always negative. 
3 

This case is NEVER OPTIMAL. 

Figure 7 SYMFUNE output for Case T. 

only two optimal solution candidates for the cross-sectional area single objective 
problem. Recall that SYMON found no bounded solution for the stress single 
objective problem, and thus SYMFUNE does not consider this case. 

The SYMON-SYMFUNE procedure has solved a nonlinear optimal design 
problem, initially with three degrees of freedom and sixty-four potential cases (26 
combinations of active constraints). This entirely automated procedure has reduced 
the solution to a set of three parametric cases presented symbolically in functional 
form. Lagrange multipliers are also supplied in nonlinear functional form for further 
use in sensitivity analysis. The corresponding solution, derived numerically, would 
have only been valid for one specific set of parameters. The symbolic solution, on the 
other hand, allows one to solve a whole class of problems in terms of unspecific 
parameters. The parametric form has proven extremely useful in reducing the 
numerical complexity -in generating Pareto-optimal plots for an extended version of 
the multiobjective hydraulic cylinder design problem in Michelena and Agogino". 

4 INTEGRATION WITH NUMERICAL PROGRAMS 

Because each numerical optimization code or numerical analysis program has its own 
input format requirements, it is difficult to develop a general preprocessor, like the 
SYMON-SYMFUNE system, with output in the specified format. One advantage of 
writing in an A1 language like FranzLISP is the ease with which it operates on text 
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QUALlTATlVE REASONlNG AND SYMBOLlC COMPUTATION 

CASE PS: 

mu = 2 a1 Tmin 
2 

The optimality conditions are: 

Setting mu >= 0 introduces no new constraints. 
2 

The feasibility conditions are: 

with solutions: 

2 a1 Tmin 2 

f = Fmin 
t = Tmin 

This case is BOUNDED 

Figure 8 SYMFUNE output for Case PS. 

data, making such a direct translation possible: For example, the FORTRANIZER 
program in VAXIMA can rewrite the mathematical formulas produced in VAXIMA 
(and thus SYMFUNE) into standard FORTRAN code. Under the UnixTM operating 
system, it would then be possible to write shell programs utilizing the pipe features of 
UnixTM to integrate a SYMON-SYMFUNE type of preprocessor to a numerical 
program written in FORTRAN such that the integration details are transparent to 
the user. Of course, if the output from SYMON-SYMFUNE is entirely numerical 
(e.g., a list of the constraints that are active at optimality for cases that are bounded 
and feasible), then such a translator is not necessary and a shared data file is sufficient 
to perform the integration. 
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A. M. AGOGINO AND A. S. ALMGREN 

A t - Tmin 

V 

CASE P 
IF f - Fmin 

1 -Tmin 

2 a, Frnin 2 na2Smax 
2 

p - n ( ~ m a x ) ~  flmin) '1 Frnin 

pmax ;?n (smax)'(~mid 
I - 2 Fmln In  (Smax) (Tmin) 
+-2a, Tmin 

Fmin 
2 cq Fmin - n% ~ m a x '  

n Smax2 

CASE S 
I I Frnin 

1 
p - Pmax 

1 - 2 d (Fmin) 1 n (Pmax) 

p2 -Pal ~ r n i n q n  (Frnin) Pmax + 2al (Fmin) Tmin 
2 

- u, (Fmin) Pmaxj l~min '  dx  (Frnin) Pmax 
2 

P3 ' (2a, Trnin - a;, Pmax) 

2 ( pmaxY2~nin 

Figure 9 Parametric solution to multiobjective hydraulic cylinder problem 

5 INTEGRATION WITH KNOWLEDGE-BASED SYSTEMS 

Although SYMON-SYMFUNE is a domain-independent system, there are a number 
of ways it could be integrated with a domain-specific knowledge-based system. The 
rules of monotonicity analysis provide a rigorous calculus for logically analyzing 
constraint activity relative to design goals. Yet the SYMON-SYMFUNE implemen- 
tation has been shown to parallel the reasoning processes used by human designers2'. 
For example, the single objective hydraulic cylinder design problem has been tested 
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QUALITATIVE REASONING AND SYMBOLIC COMPUTAT'ION 133 

on numerous experts in both industry and academia with the following specializa- 
tions: (1) engineering design with expertise in pressure vessel design and (2) mathe- 
matics and optimization theory. All tests were performed in periods ranging from 20 
to 120 minutes (with an average of around 30 minutes). The goal was to design a 
hydraulic cylinder with minimum cross-sectional area subject to constraints on 
thickness, force, pressure, and stress. Although the experts were unfamiliar with the 
theory of monotonicity analysis, they approached the problem in much the same way 
as SYMON. Most were able to determine that the force constraint was uncondition- 
ally active (design for the minimum required force). However, not all of the experts 
were able to identify all of the feasible and bounded parametric solutions and none 
were able to determine (as did SYMFUNE) that the optimal cylinder should be 
designed for the minimum allowable level of thickness. A domain-specific application 
of SYMON-SYMFUNE might be useful in strengthening the knowledge base of an 
expert system by adding a "deeper-level" of understanding of the physical problem. 

6 DISCUSSION 

SYMON and SYMFUNE have both been written as domain independent programs 
to perform qualitative reasoning and symbolic computation on a wide class of optimal 
design problems. They have been tested successfully on numerous problems published 
in the literature, including those described in Refs. 130-411. 

In its present form the main limitation of SYMON is that it works best when the 
objective function and constraints are monotonic either globally or over a predefined 
regional domain. If the monotonicities are ambiguous, SYMON will continue the 
analysis to the maximum extent allowed by the theory. Current research in qualitative 
reasoning with nonmonotonic functions is taking two directions; both of which are 
based on dividing the feasible domain into monotonic subregions: (1) using variable 
transformations4' and (2) using higher order derivatives. It is expected that the use of 
higher order derivatives will provide a continuum between qualitative and functional 
levels of knowledae reoresentation. 

SYMFUNE is hrthkr limited by the inability of VAXIMA to solve large systems of 
nonlinear eauations (a limitation it shares with the best of human mathematicians). 
Further in SYMFUNE relies on improvements in the field of symbolic 
computation. 

7 CONCLUSIONS 

The results of the qualitative and functional levels of computation in the SYMON- 
SYMFUNE programs give strong insights into the mathematical structure of 
optimization problems and can eliminate the need for further numerical analysis. The 
symbolic results provide useful assistance at the numerical level in generating 
parametric curves for applications in multiobjective optimization, sensitivity analysis, 
and parametric, probabilistic or fuzzy design. These powerful techniques for integrat- 
ing qualitative reasoning and symbolic computation in SYMON and SYMFUNE 
typically outperform human reasoning in reducing the complexity of optimal design 
problems. 
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